Skip to main content
Log in

Short High-Current Electron Beams and High-Powermicrowave Pulses in the Forevacuum Pressure Range

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We study the formation of a high-current electron beam with a duration of 1 ns in a magnetically insulated coaxial diode with a cold cathode under varying residual gas pressure. It is demonstrated that before the transition from explosive electron emission in vacuum to the electron runaway regime in a gas, an increase in the beam current with increasing pressure in the diode is observed, and for this pressure range the transformation of accelerating pulse at the cathode is determined by dynamic reflectometry. The effect of the residual gas plasma on the formation of microwave superradiance pulses in the Ka-band relativistic backward-wave oscillator, where an increase and then a decrease in the generation power take place in a narrow pressure range, is analyzed. It is shown that ionization effects in the gas lead to a loss of microwave oscillation at a lower pressure compared to the condition of the oscillator electrodynamic structure breakdown by a test microwave pulse with a power of 300 MW.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. F.Kovalev, M. I.Petelin, M.D.Raizer, et al., JETP Lett., 18, No. 4, 138–140 (1973).

  2. S.P. Bugaev, V. A. Cherepenin, V. I.Kanavets, et al., IEEE Trans. Plasma Sci., 18, No. 3, 525–536 (1990). https://doi.org/10.1109/27.55924

  3. S. H. Gold and G. S.Nusinovich, Rev. Sci. Instrum., 68, No. 11, 3945–3974 (1997). https://doi.org/10.1063/1.1148382

    Article  ADS  Google Scholar 

  4. J. Benford, J. Swegle, and E. Schamiloglu, High Power Microwaves, Taylor & Francis, New York (2007).

    Book  Google Scholar 

  5. S. D.Korovin, V. V.Rostov, S.D.Polevin, et al., Proc. IEEE, 92, No. 7, 1082–1095 (2004). https://doi.org/10.1109/JPROC.2004.829020

  6. A. V. Gunin, A. I. Klimov, S.D.Korovin, et al., IEEE Trans. Plasma Sci., 268, No. 3, 326–331 (1998). https://doi.org/10.1109/27.700761

  7. S. D.Korovin, G. A. Mesyats, I. V.Pegel, et al., IEEE Trans. Plasma Sci., 28, No. 3, 485–495 (2000). https://doi.org/10.1109/27.887654

  8. D. A. Zhang, J. Zhang, Z. X. Jin, et al., J. Appl. Phys., 118, No. 2, 023305 (2015). https://doi.org/10.1063/1.4926498

  9. M. B. Goykhman, A.V. Gromov, V.V.Kladukhin, et al., Tech. Phys. Lett., 37, No. 4, 333–335 (2011). https://doi.org/10.1134/S1063785011040109

  10. N. S. Ginzburg, A. S. Sergeev, I.V. Zotova, et al., Nucl. Instrum. Methods Phys. Res. Sect. A, 393, No. 1–3, 352–355 (1997). https://doi.org/10.1016/S0168-9002(97)00509-3

    Article  ADS  Google Scholar 

  11. G. A. Mesyats, Explosive Electron Emission, URO-Press, Ekaterinburg (1998).

    Google Scholar 

  12. N. I. Zaitsev, G. S.Korablev, and B.P. Shemyakin, Sov. J. Plasma Phys., 7, No. 3, 303–305 (1981).

    Google Scholar 

  13. A.A. El’chaninov, S. D.Korovin, V.V.Rostov, et al., JETP Lett., 77, No. 6, 266–269 (2003). https://doi.org/10.1134/1.1577754

  14. V. V.Rostov, I.V.Romanchenko, M. S.Pedos, et al., Phys. Plasmas, 23, No. 9, 093103 (2016). https://doi.org/10.1063/1.4962189

  15. N. S. Ginzburg, V.Yu. Zaslavsky, A.M.Malkin, et al., Appl. Phys. Lett., 127, No. 18, 183505 (2020). https://doi.org/10.1063/5.0026814

  16. N. S. Ginzburg, A. M. Malkin, A. S. Sergeev, et al., Phys. Rev. Lett., 117, No. 20, 204801 (2016). https://doi.org/10.1103/PhysRevLett.117.204801

  17. G.P. Bazhenov and M.P.Rotshtein, in: G. A. Mesyats, ed., Powerful Nanosecond Pulsed Sources of Accelerated Electrons [in Russian], Nauka, Novosibirsk (1974).

  18. G. A. Mesyats, I. V.Romanchenko, V. V. Rostov, et al., Phys. Plasmas, 25, No. 10, 103118 (2018). https://doi.org/10.1063/1.5052519

  19. S.Ya.Belomyttsev, V.V.Rostov, I. V.Romanchenko, et al., J. Appl. Phys., 119, No. 2, 023304 (2016). https://doi.org/10.1063/1.4938022

  20. V.V.Rostov, A.A.El’chaninov, I.V.Romanchenko, et al., Radiophys. Quantum Electron., 56, No. 8–9, 475–491 (2014). https://doi.org/10.1007/s11141-014-9452-6

  21. V. V.Rostov, A.V.Gunin, R. V.Tsygankov, et al., IEEE Trans. Plasma Sci., 46, No. 1, 33–42 (2018). https://doi.org/10.1109/TPS.2017.2773661

    Article  ADS  Google Scholar 

  22. S. D.Korovin, E. A. Litvinov, G.A.Mesyats, et al., Tech. Phys. Lett., 30, No. 19, 813–816 (2004). https://doi.org/10.1134/1.1813718

  23. V. G. Shpak, S.A. Shunailov, M. I.Yalandin, and A.N.Dyad’kov, Prib. Tekhn. Eksp., No. 1, 149–155 (1993).

  24. M. I.Yalandin, S. K. Lyubutin, M.R.Oulmascoulov, et al., IEEE Trans. Plasma Sci., 30, No. 5, 1700–1704 (2002). https://doi.org/10.1109/TPS.2002.805383

  25. G.A. Mesyats, V. G. Shpak, S.A. Shunailov, and M. I.Yalandin, Proc. SPIE, 2154, 262–268. https://doi.org/10.1117/12.175753

  26. K.A. Sharypov, M.R.Ul’masculov, V. G. Shpak, et al., Rev. Sci. Instrum., 85, No. 12, 125104 (2014). https://doi.org/10.1063/1.4902853

  27. V. F. Baranov, Dosimetry of Electron Radiation [in Russian], Atomizdat, Moscow (1974).

    Google Scholar 

  28. A.A. Eltchaninov, S. D.Korovin, G.A. Mesyats, et al., IEEE Trans. Plasma Sci., 32, No. 3, 1093–1099 (2004). https://doi.org/10.1109/TPS.2004.828802

    Article  ADS  Google Scholar 

  29. G. A. Mesyats, V. V. Rostov, K.A. Sharypov, et al., Electronics, 11, No. 2, 248 (2022). https://doi.org/10.3390/electronics11020248

    Article  Google Scholar 

  30. Yu.D.Korolev and G.A.Mesyats, Physics of Pulsed Breakdown of Gases [in Russian], Nauka, Moscow (1991).

    Google Scholar 

  31. L.P. Babich, T.V. Loiko, and V.A.Tsukerman, Phys. Usp., 33, No. 7, 521–540 (1990). https://doi.org/10.1070/PU1990v033n07ABEH002606

    Article  ADS  Google Scholar 

  32. V. F.Tarasenko, V. G. Shpak, S.A. Shunailov, et al., Tech. Phys. Lett., 29, No. 11, 879–881 (2003). https://doi.org/10.1134/1.1631351

    Article  ADS  Google Scholar 

  33. G.A. Mesyats, M. I.Yalandin, K.A. Sharypov, et al., IEEE Trans. Plasma Sci., 36, No. 5, 2497–2504 (2002). https://doi.org/10.1109/TPS.2008.2005884

    Article  ADS  Google Scholar 

  34. G.A. Mesyats, M. I.Yalandin, N. M. Zubarev, et al., Appl. Phys. Lett., 116, No. 6, 063501 (2020). https://doi.org/10.1063/1.5143486

  35. M. I.Yalandin, S. A. Shunailov, M.R. Ul’maskulov, et al., Tech. Phys. Lett., 38, No. 10, 917–920 (2012). https://doi.org/10.1134/S1063785012100264

  36. V.P.Tarakanov, User’s Manual for Code KARAT, Berkley Research Associates, Springfield (1992).

  37. G.A. Mesyats, N. S. Ginzburg, A.A. Golovanov, et al., Phys. Rev. Lett., 118, No. 26, 264801 (2017). https://doi.org/10.1103/PhysRevLett.118.264801

  38. D. V. Vinogradov and G.G.Denisov, Radiophys. Quantum Electron., 33, No. 6, 540–545 (1990). https://doi.org/10.1007/BF01037860

    Article  ADS  Google Scholar 

  39. V. N. Dulin and M. S. Zhuk, eds., Handbook of Elements of Radio-Electronic Devices [in Russian], Energiya, Moscow (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I.Yalandin.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 65, Nos. 5–6, pp. 331–341, May–June 2022. Russian DOI:https://doi.org/10.52452/00213462_2022_65_05_331

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ginzburg, N.S., Zotova, I.V., Zubarev, N.M. et al. Short High-Current Electron Beams and High-Powermicrowave Pulses in the Forevacuum Pressure Range. Radiophys Quantum El 65, 303–312 (2022). https://doi.org/10.1007/s11141-023-10214-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-023-10214-6

Navigation