Skip to main content
Log in

Influence of a Reactive Power on the Dynamics of an Ensemble of Oscillators Simulated by the Phase Equations with Inertia

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We study the simplest artificial model of a power-network operation. The original model has a ring topology consisting of locally coupled power generators alternating with power consumers. Each node of the network is represented as a phase oscillator such as the Kuramoto oscillator with inertia. The network dynamics equations are transformed in accordance with the method of effective network model proposed in [1] and are numerically studied. The purpose of the work is to analyze the possible regimes of the nonuniform-network behavior in the presence of a reactive power in the system. We also study the joint influence of the reactive power and nonlinear dissipation of oscillators. The coefficient of inertia, which is the same for all oscillators, and the reactive power of one of the oscillators are considered as the network control parameters. The regime maps on the plane of control parameters, which were obtained for constant and nonlinear dissipation of the oscillators, are compared. The results show that the reactive power complicates the network behavior and reduces the phase-locked region. On the contrary, the nonlinear dissipation has a positive effect, leading to synchronization of the network oscillators even in the presence of a reactive power.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Strogatz, Sync: The Emerging Science of Spontaneous Order, Hyperion Press, New York (2003).

    Google Scholar 

  2. D. J.Watts and S.H. Strogatz, Nature, 393, 440–442 (1998). https://doi.org/https://doi.org/10.1038/30918

  3. E. Barreto, B.Hunt, E. Ott, and P. So, Phys. Rev. E, 77, No. 3, 036107 (2008). https://doi.org/https://doi.org/10.1103/PhysRevE.77.036107

  4. J. Aguirre, R. Sevilla-Escoboza, R. Gutiérrez, et al., Phys. Rev. Lett., 112, No. 24, 248701 (2014). https://doi.org/https://doi.org/10.1103/PhysRevLett.112.248701

  5. S. Boccaletti, A.Pisarchik, C. del Genio, and A.Amann, Synchronization: From Coupled Systems to Complex Networks, Cambridge Univ. Press, Cambridge (2018). https://doi.org/https://doi.org/10.1017/9781107297111

  6. O. V. Maslennikov and V. I. Nekorkin, Phys. Usp., 60, No. 7, 694–704 (2017). https://doi.org/https://doi.org/10.3367/UFNe.2016.10.037902

  7. Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence, Springer, Heidelberg–Berlin (1984).

    Book  MATH  Google Scholar 

  8. J. A.Acebrón, L. L. Bonilla, C. J.Pérez Vicente, et al., Rev. Mod. Phys., 77, No. 1, 137–185 (2005). https://doi.org/https://doi.org/10.1103/RevModPhys.77.137

  9. T. Menara, G.Baggio, D. S. Bassett, and F.Pasqualetti, IEEE Trans. Control. Netw. Syst., 7, No. 1, 302–314 (2020). https://doi.org/https://doi.org/10.1109/TCNS.2019.2903914

  10. V.N.Belykh, V. S. Petrov, and G.V.Osipov, Regul. Chaotic Dyn., 20, No. 1, 37–48 (2015). https://doi.org/https://doi.org/10.1134/S1560354715010037

  11. Ch. Favaretto, A.Cenedese, and F.Pasqualetti, IFAC-PapersOnLine, 50, No. 1, 2433–2438 (2017). https://doi.org/https://doi.org/10.1016/j.ifacol.2017.08.405

  12. D. M. Abrams and S.H. Strogatz, Phys. Rev. Lett., 93, No. 17, 174102 (2004). https://doi.org/https://doi.org/10.1103/PhysRevLett.93.174102

  13. C.R. Laing, Physica D Nonlin. Phenom., 238, No. 16, 1569–1588 (2009). https://doi.org/https://doi.org/10.1016/j.physd.2009.04.012

  14. C. Bick, M.Goodfellow, and C.R. Laing, J. Math. Neurosci., 10, No. 9, 1–43 (2020). https://doi.org/https://doi.org/10.1186/s13408-020-00086-9

  15. D. Cumin and C.P.Unsworth, Physica D Nonlin. Phenom., 226, No. 2, 181–196 (2007). https://doi.org/https://doi.org/10.1016/j.physd.2006.12.004

  16. M. Breakspear, S.Heitmann, and A.Daffertshofer, Front. Human Neurosci., 4, 190 (2010). https://doi.org/https://doi.org/10.3389/fnhum.2010.00190

  17. J. Cabral, H. Luckhoo, M.Woolrich, et al., NeuroImage, 90, 423–435 (2014). https://doi.org/https://doi.org/10.1016/j.neuroimage.2013.11.047

  18. P. Ashwin, C.Bick, and O.Burylko, Front. Appl. Math. Stat., 2, 7 (2016). https://doi.org/https://doi.org/10.3389/fams.2016.00007

  19. S.Heitmann and G.B.Ermentrout, Biol. Cybern., 109, No. 3, 333–347 (2015). https://doi.org/https://doi.org/10.1007/s00422-015-0646-6

  20. G. I. Sivashinsky, Combust. Sci. Technol., 15, Nos. 3–4, 137–145 (1977). https://doi.org/https://doi.org/10.1080/00102207708946779

  21. D. Forrester, Sci. Rep., 5, 16994 (2015). https://doi.org/https://doi.org/10.1038/srep16994

  22. K. Wiesenfeld, P.Colet, and S. H. Strogatz, Phys. Rev. E, 57, No. 2, 1563–1569 (1998). https://doi.org/https://doi.org/10.1103/PhysRevE.57.1563

  23. G.Kozyreff, A. G. Vladimirov, and P. Mandel, Phys. Rev. Lett., 85, No. 18, 3809–3812 (2000). https://doi.org/https://doi.org/10.1103/PhysRevLett.85.3809

  24. R. A.York and R.C.Compton, IEEE Trans. Microw. Theory Techn., 39, No. 6, 1000–1009 (1991). https://doi.org/https://doi.org/10.1109/22.81670

  25. V. Krakowski, X. Li, V.Mazauric, and N.Maïzi, Energy Procedia, 105, 2712–2717 (2017). https://doi.org/https://doi.org/10.1016/j.egypro.2017.03.921

  26. Y. Guo, D. Zhang, Z. Li, et al., Int. J. Electr. Power Energy Syst., 129, 106804 (2021). https://doi.org/https://doi.org/10.1016/j.ijepes.2021.106804

  27. R. S. Pinto and A. Saa, Physica A, Stat. Mech. Appl., 463, 77–87 (2016). https://doi.org/https://doi.org/10.1016/j.physa.2016.07.009

  28. J. W. Simpson-Porco, F. Dörfler, and F. Bullo, IFAC Proc. Volumes, 45, No. 26, 264–269 (2012). https://doi.org/https://doi.org/10.3182/20120914-2-US-4030.00055

  29. V. A.Khramenkov, A. S.Dmitrichev, and V. I. Nekorkin, Izv. Vyssh. Uchebn. Zaved., Prikl. Nelin. Din., 28, No. 2, 120–139 (2020). https://doi.org/10.18500/0869-6632-2020-28-2-120-139

  30. G. Filatrella, A.Nielsen, and N.Pedersen, Eur. Phys. J., 61, No. 4, 485–491 (2008). https://doi.org/https://doi.org/10.1140/epjb/e2008-00098-8

  31. H. Li, M.Mao, K. Guo, et al., J. Clean. Prod., 278, 123625 (2021). https://doi.org/https://doi.org/10.1016/j.jclepro.2020.123625

  32. R. A. Swief, N. M. Hassan, H. M. Hasanien, et al., Ain Shams Eng. J., 12, No. 2, 1907–1922 (2021). https://doi.org/https://doi.org/10.1016/j.asej.2021.01.004

  33. J. Lehner and T.Weißbach, Energy, 34, No. 5, 555–563 (2009). https://doi.org/https://doi.org/10.1016/j.energy.2008.04.010

  34. J.Rocabert, A. Luna, F.Blaabjerg, and P.Rodríguez, IEEE Trans. Power Electron., 27, No. 11, 4734–4749 (2012). https://doi.org/https://doi.org/10.1109/TPEL.2012.2199334

  35. Y. Zhu, F. Zhuo, F.Wang, et al., IEEE Trans. Power Electron., 30, No. 12, 6706–6719 (2015). https://doi.org/https://doi.org/10.1109/TPEL.2014.2386851

  36. R.Hesse, D.Turschner, and H. P. Beck, in: Proc. Int. Conf. on Renewable Energies and Power Quality (ICREPQ’09), April 15–17, 2009, Valencia, Spain, pp. 676–681. https://doi.org/10.24084/REPQJ07.472

  37. S. D’Arco and J.A. Suul, in: Proc. 2013 IEEE Grenoble Conf., June 16-20, 2013, Grenoble, France, p. 13882000. https://doi.org/https://doi.org/10.1109/PTC.2013.6652456

  38. J. Xiao, Y. Jia, B. Jia, et al., Energy Rep., 6 Suppl. 9, p. 104–112 (2020). https://doi.org/https://doi.org/10.1016/j.egyr.2020.12.003

  39. T. Nishikawa and A. E. Motter, New J. Phys., 17, No. 1, 015012 (2015). https://doi.org/https://doi.org/10.1088/1367-2630/17/1/015012

  40. P. A. Arinushkin and T.E.Vadivasova, Chaos Solit. Fract., 152, 111343 (2021). https://doi.org/https://doi.org/10.1016/j.chaos.2021.111343

  41. Yu.V.Khrushchev, K. I. Zapodovnikov, and A.Yu.Yushkov, Electromechanical Transient Processes in Electroenergy Systems [in Russian], Tomsk Polytechnical Univ., Tomsk (2010).

    Google Scholar 

  42. M. S.Mamis and M.E. Meral, Electr. Power. Syst. Res., 76 Nos. 1–3, 46–51 (2005). https://doi.org/https://doi.org/10.1016/j_enr.2005.04.002

  43. F. Dörfler and F.Bullo, IEEE Trans. Circ. Syst. I, 60 No. 1, 150–163 (2013). https://doi.org/https://doi.org/10.1109/TCSI.2012.2215780

  44. https://zenodo.org/record/4074135#.Yqh2i_1BxaR

  45. R. D. Zimmerman, C.E.Murillo-Sanchez, and R. J.Thomas, IEEE Trans. Power Syst., 26, No. 1, 12–19 (2011). https://doi.org/https://doi.org/10.1109/TPWRS.2010.2051168

  46. A. V.Kabyshev, Compensation of Reactive Power in Electric Plants of Industrial Companies [in Russian], Tomsk Polytechnical Univ., Tomsk (2012).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Arinushkin.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 65, No. 1, pp. 65–78, January 2022. Russian DOI: https://doi.org/10.52452/00213462_2022_65_01_65

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arinushkin, P.A., Vadivasova, T.E. Influence of a Reactive Power on the Dynamics of an Ensemble of Oscillators Simulated by the Phase Equations with Inertia. Radiophys Quantum El 65, 59–70 (2022). https://doi.org/10.1007/s11141-022-10193-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-022-10193-0

Navigation