Skip to main content
Log in

Simulation of Spatial Coherence of a Multimode Signal and Response of a Horizontal Antenna in a Randomly Inhomogeneous Oceanic Waveguide

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We present simulation results for the spatial-coherence function of a multimode acoustic signal from a remote source in the horizontal plane of a randomly inhomogeneous oceanic waveguide and the angular response of the phased antenna to such a signal to estimate quantitatively the influence of the basic physical factors of the signal-field formation at the antenna input. The simulation was performed in a wide parameter range on the basis of a sufficiently general heuristic model, according to which the signal is the superposition of a finite number of plane waves with random complex amplitudes. It is shown that the most important factors include the spectrum of the longitudinal wave numbers of the normal waveguide modes, the total number and the spectrum of the intensities of the signal modes, and the mutual correlations of the mode amplitudes. Depending on the type of the wave-number spectrum, the influence of the mode-intensity spectrum turns out to be significantly different, which is indicative of the important role of the deterministic properties of the waveguide in the formation of the coherence function and the coherence scale as well as the related distortions of the antenna response to the signal compared with the case of an unbounded space. The physical interpretation of the results, which allows one to make predictive estimates of the considered characteristics in the presence of a priori information on the above-mentioned factors of the received-signal propagation, is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ya. S. Shifrin, Problems of the Statistical Theory of Antennas [in Russian], Sovetskoye Radio, Moscow (1970).

    Google Scholar 

  2. Ya. S. Shifrin, Radiotekh. Élektron., 35, No. 7, 1345–1365 (1990).

    ADS  Google Scholar 

  3. V. I. Il’ichev, A.Ya.Kaluzhnyi, L.G.Krasnyi, and V.Yu. Lapiy, Statistical Theory of Detecting Hydroacoustic Signals [in Russian], Nauka, Moscow (1992).

  4. V. A.Eliseev, Sov. Phys. Acoust., 31, No. 6, 805–807 (1985).

    Google Scholar 

  5. A. G. Sazontov and V. A. Farfel’, Acoust. Phys., 36, No. 1, 130–136 (1990).

    Google Scholar 

  6. E.Yu.Gorodetskaya, A. I. Malekhanov, A.G. Sazontov, and V. A. Farfel’ Acoust. Phys., 42, No. 5, 543–549 (1996).

    ADS  Google Scholar 

  7. N. A. Zavol’skii, A. Malekhanov, M.A.Raevskii, and A.V. Smirnov, Acoust. Phys., 63, No. 5, 542–552 (2017). https://doi. org/https://doi.org/10.1134/S1063771017040145

  8. L. M. Brekhovskikh and Yu.P. Lysanov, Fundamentals of Ocean Acoustics, Springer-Verlag, New York (2007).

    MATH  Google Scholar 

  9. D. S. Ahluwalia and J.B.Keller, in: J.B.Keller and J. S.Papadakis, eds., Wave Propagation and Underwater Acoustics, Springer-Verlag, Berlin–Heidelberg (1977), pp. 14–85.

  10. W.Kohler and G.C.Papanicolaou, in: J. B. Keller and J. S.Papadakis, eds., Wave Propagation and Underwater Acoustics, Springer-Verlag, Berlin–Heidelberg (1977), pp. 153–223.

  11. L. S. Dolin and A.G.Nechaev, Radiophys. Quantum Electron., 24, No. 11, 903–908 (1981). https://doi.org/https://doi.org/10.1007/BF01035323

  12. V. V. Artel’nyi and M.A.Raevskii, Radiophys. Quantum Electron., 27, No. 9, 804–810 (1984). https://doi.org/https://doi.org/10.1007/BF01041390

  13. A. G. Sazontov, Acoust. Phys., 42, No. 4, 551–559 (1996).

    Google Scholar 

  14. A. L. Virovlyansky, J. Acoust. Soc. Am., 137, No. 4, 2137–2147 (2015). https://doi.org/https://doi.org/10.1121/1.4906251

  15. W. A. Kuperman and G. L.D’Spain, eds., Ocean Acoustic Interference Phenomena and Signal Processing, Melville, New York (2002).

    Google Scholar 

  16. B. G. Katsnel’son and V.G.Petnikov, Shallow Sea Acoustics [in Russian], Nauka, Moscow (1997).

  17. E.Yu.Gorodetskaya, A. I. Malekhanov, and V. I.Talanov, Sov. Phys. Acoust., 38, No. 6, 571–575 (1992).

    Google Scholar 

  18. M. S. Labutina, A. I. Malekhanov, and A.V. Smirnov, Phys. Wave Phenom., 24, No. 2, 161–167 (2016). https://doi.org/https://doi.org/10.3103/S1541308X16020126

  19. A. I. Malekhanov and A.V. Smirnov, Izv. Ross. Akad. Nauk, Ser. Fiz., 79, No. 10, 1488–1492 (2015).

    Google Scholar 

  20. W. M. Carey, J. F. Lynch, W. L. Siegmann, et al., J. Comput. Acoust., 14, No. 2, 265–298 (2006). https://doi.org/https://doi.org/10.1142/S0218396X06003037

  21. J. F. Lynch, T. F. Duda, and J.A. Colosi, Acoust. Today, 10, No. 1, 10–19 (2014). https://doi.org/https://doi.org/10.1121/1.4870172

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Malekhanov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 65, No. 1, pp. 46–64, January 2022. Russian DOI: https://doi.org/10.52452/00213462_2022_65_01_46

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malekhanov, A.I., Smirnov, A.V. Simulation of Spatial Coherence of a Multimode Signal and Response of a Horizontal Antenna in a Randomly Inhomogeneous Oceanic Waveguide. Radiophys Quantum El 65, 42–58 (2022). https://doi.org/10.1007/s11141-022-10192-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-022-10192-1

Navigation