Skip to main content
Log in

Experimental Determination of Aerosol Particle Sizes Using Supercontinuum Radiation and Estimation of the Directional Pattern of Radiation from the Filamentation Region of Femtosecond Pulses

  • Published:
Radiophysics and Quantum Electronics Aims and scope

According to the results of studying the interaction of high-power femtosecond pulsed radiation from a titanium–sapphire laser with the aerosol particles of an aqueous solution of NaCl, we estimate the directional pattern of Na emission from the filamentation region. It has been found that this directional pattern is characterized by minima in angular directions of 0° and 180° and a maximum in an angular direction between 20° and 160°. Based on the results of recording of supercontinuum radiation formed in the air and scattered by aerosol particles, the features of the aerosol particle size distribution have been determined. Gradient optimization methods using graphic processors were employed to speed up calculations. The neural network was used as an optimization method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. L. Chin, H. L.Xu, Q. Luo, et al., Appl. Phys. B, 95, No. 1, 1–12 (2009). https://doi.org/https://doi.org/10.1007/s00340-009-3381-7

  2. P.Rohwetter, J.Yu, G.Mejean, et al., J. Anal. At. Spectrom., 19, No. 4, 437–444 (2004). https://doi.org/https://doi.org/10.1039/B316343A

  3. A. Braun, G.Korn, X. Liu, et al., Opt. Lett., 20, No. 1, 73–75 (1995). https://doi.org/https://doi.org/10.1364/OL.20.000073

  4. T.A. Labutin, V.N. Lednev, A.A. Ilyin, and A.M.Popov, J. Anal. At. Spectrom., 31, No. 1, 90–118 (2016). https://doi.org/https://doi.org/10.1039/C5JA00301F

  5. E. L. Gurevich and R.Hergenröder, Appl. Spectrosc., 61, No. 10, 233A–242A (2007). https://doi.org/https://doi.org/10.1366/000370207782217824

  6. A.N. Iglakova, G.G.Matvienko, V.K.Oshlakov, et al., Opt. Atmos. Okeana, 26, No. 11, 969–973 (2013).

    Google Scholar 

  7. A. V. Afonasenko, A.N. Iglakova, G. G. Matvienko, et al., Opt. Atmos. Okeana, 25, No. 3, 237–243 (2012).

    Google Scholar 

  8. D.V.Apeksimov, P.A. Babushkin, Yu. E. Geinz, et al., Atmos. Oceanic Opt., 34, No. 1, 6–13 (2021). https://doi.org/https://doi.org/10.1134/S1024856021010036

  9. S. S. Golik, A.Y.Mayor, V.V. Lisitsa, et al., Appl. Spectrosc., 88, No. 2, 337–342 (2021). https://doi.org/https://doi.org/10.1007/s10812-021-01179-3

  10. G. G. Matvienko, V. K. Oshlakov, A.N. Stepanov, and A.Yu. Sukhanov, Quantum Electron., 45, No. 2, 145–152 (2015). https://doi.org/https://doi.org/10.1070/QE2015v045n02ABEH015445

  11. G. A. Askar’yan, Sov. Phys. Usp., 16, No. 5, 680–686 (1974). https://doi.org/https://doi.org/10.1070/PU1974v016n05ABEH004130

  12. S.A.Akhmanov, V.A.Vysloukh, and A. S.Chirkin, Femtosecond Laser Pulse Optics [in Russian], Nauka, Moscow (1988).

    Google Scholar 

  13. V.P. Kandidov, S.A. Shlenov, E.P. Silaeva, et al., Opt. Atmos. Okeana, 23, No. 10, 873–884 (2010).

    Google Scholar 

  14. V. K. Oshlakov, P.A.Babushkin, and G. G. Matvienko, Opt. Atmos. Okeana, 34, No. 7, 502–506 (2021). https://doi.org/10.15372/AOO20210703

    Article  Google Scholar 

  15. N. F. Pilipetskii and A.R.Rustamov, JETP Lett., 2, No. 2, 55–56 (1965).

    Google Scholar 

  16. A.Talebpour, M.Abdel-Fattah, A. D. Bandrauk, and S. L.Chin, Laser Phys., 11, No. 1, 68–76 (2001).

    Google Scholar 

  17. V.V.Tarasov and Yu.G.Yakushenkov, Introduction to the Design of Optoelectronic Tools: A Systematic Approach [in Russian], Universitetckaya Kniga, Moscow (2016).

    Google Scholar 

  18. W. Schmidt, Optical Spectroscopy in Chemistry and Life Sciences: An Introduction, Wiley-VCH, Weinheim (2005).

    Google Scholar 

  19. A. V. Krivonosenko, D.A.Krivonosenko, and V. E. Prokop’ev, Opt. Atmos. Okeana, 25, No. 3, 268–272 (2012).

    Google Scholar 

  20. V. E. Prokop’ev, N. G. Ivanov, D.A.Krivonosenko, et al., Russ. Phys. J., 56, No. 11, 1274–1280 (2014). https://doi.org/https://doi.org/10.1007/s11182-014-0172-3

  21. N. L. Glinka, General Chemistry [in Russian], Khimiya, Moscow (1967).

    Google Scholar 

  22. F. Martin, R.Mawassi, F.Vidal, et al., Appl. Spectrosc., 56, No. 11, 1444–452 (2002).

    Article  ADS  Google Scholar 

  23. Q. Luo, J.Yu, S.A.Hosseini, et al., Appl. Opt., 44, No. 3, 391–397 (2005). https://doi.org/https://doi.org/10.1364/AO.44.000391

  24. V. E. Golant, A.P. Zhilinskii, and I.E. Sakharov, Fundamentals of Plasma Physics, Wiley, New York (1980).

    Google Scholar 

  25. A.A. Babushkin, P.A.Bazhulin, and F.A.Korolev, Methods of Spectral Analysis [in Russian], Moscow State Univ., Moscow (1962).

    Google Scholar 

  26. E. T. J. Nibbering, P. F. Curley, G.Grillon, et al., Opt. Lett., 21, No. 1, 62–64 (1996). https://doi.org/https://doi.org/10.1364/OL.21.000062

  27. A. Brodeur, C. Y.Chien, F. A. Ilkov, et al., Opt. Lett., 22, No. 5, 304–306 (1997). https://doi.org/https://doi.org/10.1364/OL.22.000304

  28. https://keras.io/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Babushkin.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 65, No. 1, pp. 16–26, January 2022. Russian DOI: https://doi.org/10.52452/00213462_2022_65_01_16

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babushkin, P.A., Matvienko, G.G., Oshlakov, V.K. et al. Experimental Determination of Aerosol Particle Sizes Using Supercontinuum Radiation and Estimation of the Directional Pattern of Radiation from the Filamentation Region of Femtosecond Pulses. Radiophys Quantum El 65, 15–24 (2022). https://doi.org/10.1007/s11141-022-10190-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-022-10190-3

Navigation