Skip to main content
Log in

Determination of Integrated Water Vapor and Liquid Water Contents from the Measurements of Microwave Atmospheric Radiation

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We present an overview of the results of our studies in the field of using the radiothermal-detection method for determining the integrated water vapor content in the atmosphere and the integrated liquid water content in the clouds, as well as a general overview of modern achievements in this field. The possibilities of determining the atmospheric integrated water vapor content and the integrated liquid water content of the clouds are shown for particular examples using the ground-based measurements of the microwave atmospheric radiation simultaneously at the frequencies 22.235 and 36.000 GHz (near the water-vapor absorption line). The possibility is shown of detecting the regions of high content of liquid water in an upper overcooled part of the powerful convective clouds and using the microwave measurements for predicting dangerous weather events including thunderstorms. The prospects of using the radiothermal-detection method in meteorology on the basis of the radiophysical complex of Lehtusi Geophysical Observatory are discussed in relation to improving the technology of regional very short-term forecast (with a lead time of 2–12 h) of dangerous phenomena caused by the development of clouds and precipitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. S. Shifrin, ed., Microwave Radiative Transfer in the Atmosphere, Trudy GGO, No. 222, (1968).

  2. Yu. I.Rabinovich and G. G. Shchukin, Trudy GGO, No. 222, 62–73 (1968).

  3. A. E. Basharinov and B.G.Kutuza, Trudy GGO, No. 222, 100–110 (1968).

  4. V. D. Stepanenko, G.G. Shchukin, L.P. Bobylev, and S.Yu. Matrosov, Radiothermal Location in Meteorology [in Russian], Gidrometeoizdat, Leningrad (1987).

    Google Scholar 

  5. A.P. Naumov and V.M.Plechkov, Izv. Akad. Nauk SSSR, Atmos. Oceana, 7, No. 3, 352–357 (1971).

  6. V.P. Borin and A.P. Naumov, Izv. Akad Nauk SSSR, Atmos. Oceana, 14, No. 8, 894–897 (1978).

  7. A.P.Naumov and V. S. Stankevich, Radiophys. Quantum. Electron. 26, No. 6, 562–571 (1983). https://doi.org/10.1007/BF01033702

    Article  ADS  Google Scholar 

  8. A. G. Gorelik, Yu.A. Frolov, G.G. Shchukin, et al., Trudy GGO, No. 535, 3–18 (11989).

  9. E. R.Westwater, in: M. Janssen, ed., Atmospheric Remote Sensing by Microwave Radiometry, Wiley, New York (1993), pp. 145–213.

    Google Scholar 

  10. E.R.Westwater, Radio Sci., 13, No. 4, 677–685 (1978). https://doi.org/10.1029/RS013i004p00677

    Article  ADS  Google Scholar 

  11. E.R.Westwater, S. Crewel, and C.Mätzler, URSI, Radio Sci. Bull., No. 310, 59–80 (2004).

  12. E.R.Westwater, Y. Han, M. D. Shupe, and S.Y.Matrosov, J. Geophys. Res., 106, No. D23, 32019–32030 (2001). https://doi.org/10.1029/2000JD000055

    Article  ADS  Google Scholar 

  13. G. Elgered and O. J. Jarlemark, Radio Sci., 33, No. 3, 707–717 (1998). https://doi.org/10.1029/98RS00488

    Article  ADS  Google Scholar 

  14. C.Mätzler and J. Morland, IEEE Trans. Geosci. Remote Sens., 47, No. 6, 1585–1594 (2009). https://doi.org/10.1109/TGRS.2008.2006984

  15. T.Rose, S.Crewell, U. Lohnert, and C. Simmer, Atmos. Res., 75, No. 3, 183–200 (2005). https://doi.org/10.1016/j.atmosres.2004.12.005

    Article  Google Scholar 

  16. D. D.Turner, A.A.Clough, J. C. Liljegren, et al., IEEE Trans. Geosci. Remote Sens., 45, No. 11, 3680–3690 (2007). https://doi.org/10.1109/TGRS.2007.903703

    Article  ADS  Google Scholar 

  17. A.G.Kislyakov, Radiotekh. Élektron., 13, No. 7, 1161–1168 (1968).

    Google Scholar 

  18. Y. Han, E. R.Westwater, IEEE Trans. Geosci. Remote Sens., 38, No. 3, 1260–1276 (2000). https://doi.org/10.1109/36.843018

    Article  ADS  Google Scholar 

  19. S. Y. Matrosov and D. D.Turner, J. Atmos. Ocean. Technol., 35, No. 5, 1091–1102. 10.1175/JTECH-D-17-0179.1

  20. A.V.Koldaev and G. G. Shchukin, Trudy GGO, No. 559, 210–236 (2009).

  21. D.Cimini, E.R.Westwater, A. J.Gasiewski, et al., IEEE Trans. Geosci. Remote Sens., 45, No. 9, 2759–2777 (2007). https://doi.org/10.1109/TGRS.2007.897423

    Article  ADS  Google Scholar 

  22. D. M. Karavaev and G.G. Shchukin, Atmos. Ocean. Opt., 29, No. 3, 308–313 (2016). https://doi.org/10.1134/S1024856016030076

    Article  Google Scholar 

  23. Yu.V.Kuleshov, G. G. Shchukin, I.A. Gotyur, et al., Trudy Voen.-Kosm. Akad. im.A. F.Mozhaisky, No. 662, 184–187 (2018).

  24. S. Crewell, M. Drusch, E. van Meijgaard A. van Lammeren, Boreal Environ. Res., 7, No. 3, 235–245 (2002)

    Google Scholar 

  25. G. G. Shchukin, B. G. Kutuza, N. S.Dorozhkin, et. al., Trudy NITs DZA., Prikl. Meteorol., 4, No. 552, 87–104 (2002).

  26. D. M. Karavaev and G.G. Shchukin, Gidrometeor. Ékol., 62, 7–26 (2021). 10.33933/2074-2762-2021-62-7-26

  27. M.A.Vasishcheva and G. G. Shchukin, Experimental Study of the Cloud Liquid Water Content. Statistical Models of the Atmosphere [in Russian], VNIIGMI-MTsD, Obninsk (1977).

  28. G. G. Shchukin and D. M. Karavaev, Trudy GGO, No. 557, 119–132 (2008).

  29. G.N. Ilyin, V.Yu.Bykov, and V. G. Stempkovsky, Proc. Inst. Appl. Astron., 27, 204–201 (2013).

    Google Scholar 

  30. V.Yu. Bykov, G.N. Ilyin, D.M.Karavaev, and G.G. Shchukin, Trudy Voen.-Kosm. Akad. im. A. F. Mozhaisky, No. 670, 150–153 (2019).

  31. R.Ware, R.Carpenter, J.Güldner, et al., Radio Sci., 38, No. 4, 8079–8032 (2003). https://doi.org/10.1029/2002RS002856

    Article  ADS  Google Scholar 

  32. M.P. Cadeddu, J. C. Liljegren, and D.D.Turner, Atmos. Meas. Tech., 6, No. 9, 22359–2372 (2013). https://doi.org/10.5194/amt-6-2359-2013

  33. E. N. Kadygrov, A.G.Gorelik, and T. A.Tochilkina, Atmos. Ocean. Opt., 27, No. 6, 596–604 (2014). https://doi.org/10.1134/S1024856014060074

    Article  Google Scholar 

  34. A. J. Illingworth, D.Cimini, and C.Gaffard, Bull. Amer. Meteor. Soc., 96, No. 12, 2107–2125. 10.1175/BAMS-D-13-00283.1

  35. D. Cimini, M.Nelson, J. Güldner, and R.Ware, Atmos. Meas. Tech., 8, No. 1, 315–333 (2015). https://doi.org/10.5194/amt-8-315-2015

  36. A. J. Illingworth, R. J.Hogan, E. J.O’Connar, et al., Bull. Amer. Meteor. Soc., 88, 883-898 (2007). https://doi.org/10.1175/BAMS-88-6-883

  37. G. N. Ilyin and A. V.Troitsky, Radiophys. Quantum Electron., 60, No. 4, 291–299 (2017). https://doi.org/10.1007/S11141-017-9799-6

    Article  ADS  Google Scholar 

  38. I. A. Gotyur, D.M.Karavaev, V. M. Krasnov, et al., Radiophys. Quantum Electron., 60, No. 3, 200–206 (2017). https://doi.org/10.1007/S11141-017-9790-2

    Article  ADS  Google Scholar 

  39. D. M.Karavaev, Yu. V.Kuleshov, and A. V. Lebedev, et al., Cosmic Res., 58, No. 5, 365–371 (2020). https://doi.org/10.1134/S0010952520050032

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. M. Karavaev.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 64, No. 12, pp. 942–953, November 2021. Russian DOI: https://doi.org/10.52452/00213462_2021_64_12_942

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karavaev, D.M., Shchukin, G. Determination of Integrated Water Vapor and Liquid Water Contents from the Measurements of Microwave Atmospheric Radiation. Radiophys Quantum El 64, 846–856 (2022). https://doi.org/10.1007/s11141-022-10183-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-022-10183-2

Navigation