Skip to main content
Log in

Selection of Simulating Signal-Like Interference in Radar Systems with Internal Coherence

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We propose and study a method of defense against intelligent simulating signal-like active interference on the basis of an assessment of the coherent properties of radar signals. The signalcoherence measure, which is defined as the entropy of the signal-energy distribution over the eigensubspaces of the signal correlation matrix, is proposed as a selection criterion. The main factors, which influence the coherence degree of radar signals, are analyzed. The computation cost during the implementation of the proposed method for estimating the quantitative measure of the signal coherence is estimated. The results of the full-scale experimental studies, which employ various types of aircraft (with a propeller engine and turbojets) and the special equipment, i.e., a repeater of simulating signal-like interference, are presented. The estimated degree of coherence of the signals from real airborne objects and the simulating signal-like interference, which has been obtained during the experimental studies, confirms the possibility of selecting the simulating signal-like interference by the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. I. Kanashchenkov, Protection of Radar Systems from Interference. State-of-the-Art and Development Trends [in Russian], Radiotekhnika, Moscow (2003).

  2. A. V. Mikhailov, Aerospace Defense, 7, 20–25 (2010).

    Google Scholar 

  3. M. V. Maksimov, Protection from Radio Interference [in Russian], Sovetskoe Radio, Moscow (1976).

    Google Scholar 

  4. S.R. Geister, Adaptive Detection and Identification with Interference Selection Using Spectral Portraits [in Russian], Military Academy of the Republic of Belarus, Minsk (2000).

    Google Scholar 

  5. Yu.T.Karmanov, Vestn. Yuzh.-Ural. Gos. Univ., No. 26, 41–46 (2009).

  6. S. N. Kireev and V.A.Talanov, Radiotekhnika, No. 1, 60–64 (2008).

  7. A. F. Kryachko and M.A.Kuksenko, Vopr. Radioélektron., No. 2, 107–116 (2009).

  8. A.F.Kryachko, N.A.Gladky, and V.K. Losev, Usp. Sovr. Radioélektron., No. 10, 201–204 (2015).

    Google Scholar 

  9. V. A. Bukhalev, V.A.Boldinov, and S.P.Pryadkin, Vestn. Mosk. Aviat. Inst., 20, No. 5, 149–157 (2013).

    Google Scholar 

  10. A.V. Chernousov, A.V.Kuzovnikov, and V.G. Somov, Vest. Akad. M. F.Reshetnev Sibir. Gos. Aérokosm. Univ. , No. 4, 81–84 (2013).

  11. M. G.Koryagin and S. N. Nikiforov, Telekommun. Ustr. Sist., 7, No. 2, 149–151 (2017).

    Google Scholar 

  12. A.F.Kryachko, M.A.Glaznev, V.K. Losev, and Ya.Ya.Levin, Vopr. Radioélektron., No. 6, 71–75 (2016).

  13. Yu.M. Perunov, Radioelectronic Suppression of Information Channels of the Weapon-Control Systems [in Russian], Radiotekhnika, Moscow (2008).

    Google Scholar 

  14. S.R. Geister and I. S. Sadovsky, Dokl. Belorus. Gos. Univ. Informat. Radioeléktron. No. 1, 48–53 (2005).

    Google Scholar 

  15. E. S. Fitasov, Datchiki Sist., No. 3, 24–28 (2017).

  16. Ya.D. Shirman, Yu. I. Losev, N.N. Minervin, et al., Radioelectronic Systems: Fundamentals of Development and Theory [in Russian], Handbook, MAKVIS, Moscow (1998).

    Google Scholar 

  17. Ya.D. Shirman and V.N.Manzhos, Theory and Technique of Processing Radar Information against a Background of Interference [in Russian], Radio i Svyaz’, Moscow (1981).

    Google Scholar 

  18. M. M.Chernykh, Radiotekhnika, No. 2, 36–42 (1999).

  19. A. G. Aganin, V.V. Zamarev and O.V.Vasil’ev, Radiotekhnika, No. 6, 50–57 (2003).

  20. P. V. Mikheev, Radiophys. Quantum Electron., 49, No. 1, 74–78 (2006). https://doi.org/10.1007/s11141-006-0039-8

    Article  ADS  Google Scholar 

  21. I.Ya.Orlov, E. S. Fitasov, D.N. Ivlev, and S.A.Kozlov, Antenny, No. 3, 31–36 (2017).

  22. E. S. Fitasov, I.Ya.Orlov, E.V. Legovtsova, and V.V.Nasonov, Radiophys. Quantum Electron., 64, No. 1, 64–76 (2021). 10.52452/00213462_2021_64_01_69.

  23. V. I. Bunimovich, Fluctuation Processes in Radio Receiving Units, Sovetskoe Radio, Moscow (1951).

    Google Scholar 

  24. G. A. Egorochkin, A.B.Blyakhman, A.D.Bomshtein, et al., History of Domestic Radar [in Russian], Izd. Dom Stolichnaya Éntsiklopediya, Moscow (2015).

  25. E.S.Fitasov, I.Ya.Orlov, S.A.Kozlov, et al., Radiophys. Quantum Electron., 62, No. 6, 412–419 (2019). 10.1007/s11141-019-09987-6

  26. E. S. Fitasov and S. A.Kozlov, “An appliance for selecting false targets” [in Russian], Russian Federation RF Patent No. 184465 (2018).

  27. S. L. Marple, Jr., Digital Spectral Analysis and Applications, Prentice-Hall, Englewood Cliffs, N.J. (1987).

  28. E. S. Fitasov, E. V. Legovtsova, D.A.Pal’guev, et al., Radiophys. Quantum Electron., 64, No. 4, 300–308 (2021). https://doi.org/10.1007/s11141-021-10132-5

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Fitasov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 64, No. 11, pp. 917–925, November 2021. Russian DOI: https://doi.org/10.52452/00213462_2021_64_11_917

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fitasov, E.S., Legovtsova, E.V., Kudryashova, O.E. et al. Selection of Simulating Signal-Like Interference in Radar Systems with Internal Coherence. Radiophys Quantum El 64, 825–832 (2022). https://doi.org/10.1007/s11141-022-10181-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-022-10181-4

Navigation