Skip to main content

Advertisement

Log in

Development of High-Power Long-Pulse Submillimeter-Wave Free-Electron Lasers on the Basis of the Linear Induction Accelerator Complex

  • Published:
Radiophysics and Quantum Electronics Aims and scope

The high-power long-pulse submillimeter-wave free-electron laser (FEL) is developed jointly by the Institute of Nuclear Physics and the Institute of Applied Physics on the basis of the linear induction accelerator complex, which forms electron beams with a particle energy of 5–20 MeV, a current of 2 kA, and a duration of 200 ns. The studies are aimed at achieving power levels of 0.1–1.0 GW and an energy of 10–100 J in pulses of radiation in the indicated range. We present the results of electron-optical experiments, in which electron beams with parameters acceptable for their efficient application in FELs were formed. Helical pulse undulators have been developed for the build-up of operating transverse oscillations of electrons. The possibility to use modified Bragg cavities, which are based on the coupling of propagating and quasi-critical waves and capable of ensuring stable narrow-band generation at significantly large (as compared with the wavelength) transverse dimensions of the interaction space, is analyzed as the key component of the electrodynamic system of a generator. The results of the simulating and cold testing of this type of cavities for operation in the submillimeter-wave range with a channel diameter exceeding 20 wavelengths are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.V.Arzhannikov, N. S. Ginzburg, A. M. Malkin, et al., in: Proc. 44th Int. Conf. on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2019), September 1–6, 2019, Paris, France, p. 5864231. https://doi.org/10.1109/IRMMW-THz.2019.8874573

  2. N.Yu.Peskov, A. V. Arzhannikov, N. S. Ginzburg, et al., Proc. SPIE, 11582, 1158207 (2020). https://doi.org/10.1117/12.2579554

    Article  Google Scholar 

  3. P. V. Logachev, G. I. Kuznetsov, A. A.Korepanov, et al., Instrum. Exp. Techn., 56, No. 6, 672–679 (2013). https://doi.org/10.1134/S0020441213060195

  4. D. A. Nikiforov, M. F. Blinov, V.V. Fedorov, et al., Phys. Part. Nuclei Lett., 17, No. 2, 197–203 (2020). https://doi.org/10.1134/S1547477120020156

    Article  ADS  Google Scholar 

  5. E. S. Sandalov, S. L. Sinitsky, D. I. Skovorodin, et al., IEEE Trans. Plasma Sci., 49, No. 2, 718–728 (2021). https://doi.org/10.1109/TPS.2020.3045345

    Article  ADS  Google Scholar 

  6. N.Yu.Peskov, N. S. Ginzburg, A. K. Kaminsky, et al., Radiophys. Quantum Electron., 63, No. 12, 931–975 (2021). https://doi.org/10.1007/s11141-021-10105-8

    Article  ADS  Google Scholar 

  7. A. K. Kaminsky, A.A.Kaminsky, S.N. Sedykh, and A.P. Sergeev, in: Proc. 18th Int. FEL Conf. (FEL-1996), August 26–31, 1996, Rome, Italy, pp. II109-II110.

  8. N.Yu.Peskov, N. S. Ginzburg, A. K. Kaminsky, et al., in: Proc. 41th Int. Conf. on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2016), September 25–30, 2016, Copenhagen, Denmark, p. 7758360. https://doi.org/10.1109/IRMMW-THz.2016.7758360

  9. H.P. Freund and T.M.Antonsen, Principles of Free-Electron Lasers, Chapman & Hall, London (1996).

    Google Scholar 

  10. N. S. Ginzburg and N.Yu.Peskov, Zh. Tekh. Fiz., 58, No. 5, 859–869 (1988).

    Google Scholar 

  11. A.A. Kaminsky, A.K.Kaminsky, S. B.Rubin, et al., Part. Accel., 33, 189–194 (1990).

    Google Scholar 

  12. M. E. Conde and G. Bekefi, Phys. Rev. Lett., 67, No. 22, 3082–3085 (1991). https://doi.org/10.1103/PhysRevLett.67.3082

    Article  ADS  Google Scholar 

  13. N. F.Kovalev, I. M. Orlova, and M. I.Petelin, Radiophys. Quantum Electron., 11, No. 5, 449–450 (1968). https://doi.org/10.1007/BF01034380

    Article  ADS  Google Scholar 

  14. V. L. Bratman, G. G. Denisov, N. S. Ginzburg, and M. I.Petelin, IEEE J. Quantum Electron., QE-19, No. 3, 282–296 (1983). https://doi.org/10.1109/JQE.1983.1071840

  15. H.Kogelnik and C.V. Shank, J. Appl. Phys., 43, No. 5, 2327–2335 (1972). https://doi.org/10.1063/1.1661499

    Article  ADS  Google Scholar 

  16. A.Yariv, Quantum Electronics, John Wiley, New York (1975).

    Google Scholar 

  17. N. S. Ginzburg, A. M. Malkin, N.Yu.Peskov, and A. S. Sergeev, Tech. Phys. Lett., 32, No. 20, 896–900 (2006). https://doi.org/10.1134/S1063785006100245

    Article  ADS  Google Scholar 

  18. A.V. Arzhannikov, N. S. Ginzburg, P.V. Kalinin, et al., Appl. Phys. Lett., 101, 083507 (2012). https://doi.org/10.1063/1.4747149

    Article  ADS  Google Scholar 

  19. A. V. Gaponov, A. L. Gol’denberg, D.P.Grigor’ev, et al., JETP Lett., 2, No. 9, 267–269 (1965).

  20. N. S. Ginzburg, A. M. Malkin, N.Yu.Peskov, et al., Appl. Phys. Lett., 95, 043504 (2009). https://doi.org/10.1063/1.3184592

  21. N. S. Ginzburg, V.Yu. Zaslavskii, I. V. Zotova, et al., JETP Lett., 91, No. 6, 266–270 (2010). https://doi.org/10.1134/S0021364010060020

    Article  ADS  Google Scholar 

  22. N. S. Ginzburg, I. I. Golubev, S. M. Golubykh, et al., Tech. Phys. Lett., 36, No. 10, 952–956 (2010). https://doi.org/10.1134/S1063785010100238

    Article  ADS  Google Scholar 

  23. N.Yu.Peskov, N. S. Ginzburg, I. I. Golubev, et al., Appl. Phys. Lett., 116, 213505 (2020). https://doi.org/10.1063/5.0006047

    Article  ADS  Google Scholar 

  24. M. A. Dem’yanenko, D. G. Esaev, B. A.Knyazev, et al., Appl. Phys. Lett., 92, 131116 (2008). https://doi.org/10.1063/1.2898138

  25. G.R.Neil, C. L. Bohn, S.V. Benson, et al., Phys. Rev. Lett., 84, 662–665 (2000). https://doi.org/10.1103/PhysRevLett.84.5238

    Article  ADS  Google Scholar 

  26. G. M. Kazakevich, V.M.Pavlov, Y. U. Jeong, and B.C. Lee, Phys. Rev. ST Accel. Beams, 12, 040701 (2009). https://doi.org/10.1103/PhysRevSTAB.12.040701

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N.Yu. Peskov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 64, No. 11, pp. 905–916, November 2021. Russian DOI: https://doi.org/10.52452/00213462_2021_64_11_905

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arzhannikov, A.V., Bak, P., Belousov, V.I. et al. Development of High-Power Long-Pulse Submillimeter-Wave Free-Electron Lasers on the Basis of the Linear Induction Accelerator Complex. Radiophys Quantum El 64, 814–824 (2022). https://doi.org/10.1007/s11141-022-10180-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-022-10180-5

Navigation