Skip to main content
Log in

Pedestrian-Induced Bridge Instability: The Role of Frequency Ratios

  • Published:
Radiophysics and Quantum Electronics Aims and scope

The emergence of the pedestrian-induced bridge instability is conventionally associated with crowd synchrony; however, this view has been challenged. In this paper, we use a bio-mechanical pedestrian model in the form of an active inverted pendulum to analyze the average contribution of a single pedestrian to possibly uncorrelated crowd dynamics and bridge oscillations. We obtained that depending on the ratio of the bridge vibration and walking frequencies, the pedestrian can amplify bridge vibration or, surprisingly, extract energy from the bridge and damp bridge oscillations. In particular, we show that different combinations of the bridge and pedestrian step frequencies corresponding to the same or close frequency ratios can trigger two drastically different bridge dynamics, with enhanced or suppressed oscillations far from the resonances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Oeuvres Complétes de Christian Huygens. Publ. par la Sociètè hollandaise des sciences. Vol. 5, Correspondance 1664–1665, M. Nijhoff, La Haye (1893).

  2. M. Bennett, M. F. Schatz, H. Rockwood, and K. Wiesenfeld, Proc. Royal Soc. A: Math., Phys. and Engin. Sci., 458, 563–579 (2002). https://doi.org/10.1098/rspa.2001.0888

    Article  Google Scholar 

  3. A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences, Cambridge University Press (2003).

    Book  Google Scholar 

  4. J. Pena Ramirez, L. A. Olvera, H. Nijmeijer, and J. Alvarez, Sci. Rep., 6, 23580 (2016). https://doi.org/10.1038/srep23580

    Article  ADS  Google Scholar 

  5. L. M. Pecora and T. L. Carroll, Phys. Rev. Lett., 80, 2109 (1998). https://doi.org/10.1103/PhysRevLett.80.2109

    Article  ADS  Google Scholar 

  6. S. H. Strogatz, Nature, 410, 268–276 (2001). https://doi.org/10.1038/35065725

    Article  ADS  Google Scholar 

  7. S. Boccaletti, J. Kurths, G. Osipov, D. Valladares, and C. Zhou, Phys. Rep., 366, 1–101 (2002). https://doi.org/10.1016/S0370-1573(02)00137-0

    Article  ADS  MathSciNet  Google Scholar 

  8. V. N. Belykh, I. V. Belykh, and M. Hasler, Phys. D: Nonlin. Phenom., 195, 159–187 (2004). https://doi.org/10.1016/j.physd.2004.03.012

    Article  ADS  Google Scholar 

  9. T. Nishikawa and A. E. Motter, Proc. Nat. Acad. Sci. USA, 107, 10342–10347 (2010). https://doi.org/10.1073/pnas.0912444107

    Article  ADS  Google Scholar 

  10. A. J. Whalen, S. N.Brennan, T. D. Sauer, and S. J. Schiff, Phys. Rev. X, 5, 011005 (2015). https://doi.org/10.1103/PhysRevX.5.011005

    Article  Google Scholar 

  11. H. Abarbanel, M. I.Rabinovich, A. Selverston, M. Bazhenov, R. Huerta, M. Sushchik, and L. Rubchinskii, Phys. Usp., 39, 337–362 (1996). https://doi.org/10.1070/PU1996v039n04ABEH000141

    Article  ADS  Google Scholar 

  12. A. Szücs, R. Huerta, M. I.Rabinovich, and A. I. Selverston, Neuron, 61, 439–453 (2009). https://doi.org/10.1016/j.neuron.2008.12.032

    Article  Google Scholar 

  13. R. C. Elson, A. I. Selverston, H. D.Abarbanel, and M. I.Rabinovich, J. Neurophys., 88, 1166–1176 (2002). https://doi.org/10.1152/jn.2002.88.3.1166

    Article  Google Scholar 

  14. R. Roy and K. S. Thornburg Jr., Phys. Rev. Lett., 72, 2009 (1994). https://doi.org/10.1103/PhysRevLett.72.2009

    Article  ADS  Google Scholar 

  15. S. Shahin, F. Vallini, F. Monifi, et al., Opt. Lett., 41, 5238–5241 (2016). https://doi.org/10.1364/OL.41.005238

    Article  ADS  Google Scholar 

  16. J. Ding, I. Belykh, A. Marandi, and M.-A.Miri, Phys. Rev. Appl., 12, 054039 (2019). https://doi.org/10.1103/PhysRevApplied.12.054039

    Article  ADS  Google Scholar 

  17. A.E. Motter, S. A.Myers, M. Anghel, and T. Nishikawa, Nat. Phys., 9, 191–197 (2013). https://doi.org/10.1038/nphys2535

    Article  Google Scholar 

  18. I. Belykh, M. Bocian, A. Champneys, et al., Nat. Commun., 12, 7223 (2021). https://doi.org/10.1038/s41467-021-27568-y

    Article  ADS  Google Scholar 

  19. Y. Fujino, B. M.Pacheco, S.-I. Nakamura, and P. Warnitchai, Earthquake Eng. Struct. Dyn., 22, 741–758 (1993). https://doi.org/10.1002/eqe.4290220902

    Article  Google Scholar 

  20. F. Danbon and G. Grillaud, in: Proc. Footbridge-2nd Int. Conf. Dec., Venice, Italy, 10075051 (2005).

  21. P. Dallard, A. Fitzpatrick, A. Flint, S. Le Bourva, A. Low, R. Ridsdill Smith, and M. Willford, Struct. Eng., 79, 17–21 (2001).

    Google Scholar 

  22. S. Nakamura, Struct. Eng., 81, 22–26 (2003).

    Google Scholar 

  23. J. M. Brownjohn, P. Fok, M. Roche, and P. Omenzetter, Struct. Eng., 82, 21–27 (2004).

    Google Scholar 

  24. J. Macdonald, in: Proc. Inst. Civil Engineers–Bridge Eng., 161, No. 2, 69–77 (2008). https://doi.org/10.1680/bren.2008.161.2.69

  25. E. Caetano, Á. Cunha, F. Magalhães, and C. Moutinho, Eng. Struct., 32, 1069–1081 (2010). https://doi.org/10.1016/j.engstruct.2009.12.034

    Article  Google Scholar 

  26. I. Belykh, R. Jeter, and V. Belykh, Sci. Adv., 3, e1701512 (2017). https://doi.org/10.1126/sciadv.1701512

    Article  ADS  Google Scholar 

  27. S. H. Strogatz, D. M. Abrams, A. McRobie, et al., Nature, 438, No. 7064, 43–44 (2005). https://doi.org/10.1038/438043a

    Article  ADS  Google Scholar 

  28. B. Eckhardt, E. Ott, S. H. Strogatz, et al., Phys. Rev. E, 75, 021110 (2007). https://doi.org/10.1103/PhysRevE.75.021110

    Article  ADS  MathSciNet  Google Scholar 

  29. M. M. Abdulrehem and E. Ott, Chaos, 19, 013129 (2009). https://doi.org/10.1063/1.3087434

    Article  ADS  Google Scholar 

  30. J. H. Macdonald, Proc. Roy. Soc. of London A: Math., Phys. Eng. Sci., 465, 1055-1073 (2008).

  31. M. Bocian, J. Macdonald, and J. Burn, J. Sound Vibr ., 331, 3914–3929 (2012). https://doi.org/10.1016/j.jsv.2012.03.023

  32. I. V. Belykh, R. Jeter, and V. N. Belykh, Chaos, 26, 116314 (2016). https://doi.org/10.1063/1.4967725

    Article  ADS  MathSciNet  Google Scholar 

  33. V. S.Afraimovich, N. N.Verichev, and M. I.Rabinovich, Radiophys. Quantum Electron., 29, No. 9, 795–803 (1986). https://doi.org/10.1007/BF01034476

    Article  ADS  Google Scholar 

  34. C. Barker, in: Proc. Footbridge 1st Int. Conf., Paris, 20–22 November, 2002 , 10006505.

  35. A. Hof, R. M. van Bockel, T. Schoppen, and K. Postema, Gait and Posture, 25, No. 2, 250–258 (2007). https://doi.org/10.1016/j.gaitpost.2006.04.013

    Article  Google Scholar 

  36. A. Hof, S. Vermerris, and W. Gjaltema, J. Exper. Biol., 213, 2655–2664 (2010). https://doi.org/10.1242/jeb.042572

    Article  Google Scholar 

  37. C. D. MacKinnon and D. A. Winter, J. Biomech., 26, 633–644 (1993). https://doi.org/10.1016/0021-9290(93)90027-C

    Article  Google Scholar 

  38. A.A.Andronov, A.A.Vitt, and S. E.Khaikin, Theory of Oscillators, Pergamon, London (1966).

    MATH  Google Scholar 

  39. K. F.Teodorchik, Self-Oscillating Systems [in Russian], Gostekhizdat, Moscow (1952).

    Google Scholar 

  40. V. N. Belykh and M. I.Rabinovich, in: Fiz. Enzikl, Vol. 2, Soviet Encyclopedia, Moscow (1990), pp. 38-39.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Belykh.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 64, No. 10, pp. 777–786, October 2021. Russian DOI: https://doi.org/10.52452/00213462_2021_64_10_777

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belykh, I., Daley, K.M. & Belykh, V.N. Pedestrian-Induced Bridge Instability: The Role of Frequency Ratios. Radiophys Quantum El 64, 700–708 (2022). https://doi.org/10.1007/s11141-022-10172-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-022-10172-5

Navigation