Skip to main content
Log in

“Cooling” of an Electron Bunch in the Regime of Sectioned Trapping of Electrons by the Excited Wave Fields

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We propose and describe a method to decrease the spread in the energies of relativistic electrons in their ensemble (bunch). The method is based on the passage by the beam of a sequence of amplifying sections, in which the process of the trapping and adiabatic deceleration of the particles by the wave field that they excite is realized. Within the framework of the simplest universal model of the electron-wave interaction in the amplifying sections, the basic regularities of multi-section cooling of an electron bunch are revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. W. J. McNeil and N. R. Thompson, Nat. Photon., 4, 814–821 (2010). https://doi.org/10.1038/nphoton.2010.239

    Article  ADS  Google Scholar 

  2. C. Pellegrini, A. Marinelli, and S. Reichel, Rev. Modern Phys., 88, 015006 (2016). https://doi.org/10.1103/RevModPhys.88.015006

    Article  ADS  Google Scholar 

  3. W. Ackermann, G. Asova, V. Ayvazyan, et al., Nat. Photon., 1, 336–342 (2007). https://doi.org/10.1038/nphoton.2007.76

    Article  ADS  Google Scholar 

  4. P. Emma, R. Akre, J. Arthur, et al., Nat. Photon., 4, 641–647 (2010). https://doi.org/10.1038/nphoton.2010.176

    Article  ADS  Google Scholar 

  5. C. Emma, J. Wu, K. Fang, et al., Phys. Rev. ST Accel. Beams, 17, 110701 (2014). https://doi.org/10.1103/PhysRevSTAB.17.110701

    Article  ADS  Google Scholar 

  6. T. Ishikawa, H. Aoyagi, T. Asaka, et al., Nat. Photon., 6, 540–544 (2012). https://doi.org/10.1038/nphoton.2012.141

    Article  ADS  Google Scholar 

  7. E. Allaria, R. Appio, L. Badano, et al., Nat. Photon., 6, 699–704 (2012). https://doi.org/10.1038/nphoton.2012.233

    Article  ADS  Google Scholar 

  8. E. A. Schneidmiller, B. Faatz, M. Kuhlmann, et al., Phys. Rev. Accel. Beams, 20, 020705 (2017). https://doi.org/10.1103/PhysRevAccelBeams.20.020705

    Article  ADS  Google Scholar 

  9. W. B. Colson, W. H. Louisell, J. F. Lam, and C. D. Cantrell, J. Opt. Soc. Am., 68, 1620 (1978).

    Article  ADS  Google Scholar 

  10. V. L. Bratman, N. S. Ginzburg, and M. I. Petelin, Opt. Commun., 30, No. 3, 409–412 (1979). https://doi.org/10.1016/0030-4018(79)90382-1

    Article  ADS  Google Scholar 

  11. Zh. Huang and K.-J. Kim, Phys. Rev. ST. Accel. Beams, 10, No. 3, 034801 (2007). https://doi.org/10.1103/PhysRevSTAB.10.034801

    Article  ADS  Google Scholar 

  12. A. N. Skrinskiy and V. V. Parkhomchuk, Fiz. Elementarn. Chastits i Atomn. Yadra, 12, No. 3, 557–613 (1981).

    Google Scholar 

  13. J. L. Hirshfield and G. S. Park, Phys. Rev. Lett., 66, No. 18, 2312–2315 (1991). https://doi.org/10.1103/PhysRevLett.66.2312

    Article  ADS  Google Scholar 

  14. H. Deng and C. Feng, Phys. Rev. Lett., 111, No. 8, 084801 (2013). https://doi.org/10.1103/PhysRevLett.111.084801

    Article  ADS  Google Scholar 

  15. E. D. Belyavskiy, Radiotekh. Élektron., 16, No. 1, 208–210 (1971).

    Google Scholar 

  16. P. Sprangle, C. M. Tang, and W. M. Manheimer, Phys. Rev. Lett., 43, No. 26, 1932–1936 (1979). https://doi.org/10.1103/PhysRevLett.43.1932

    Article  ADS  Google Scholar 

  17. N. M. Kroll, P. L. Morton, and M. N. Rosenbluth, IEEE J. Quantum Electron., 17, No. 8, 1436–1468 (1981). https://doi.org/10.1109/JQE.1981.1071285

    Article  ADS  Google Scholar 

  18. T. Orzechowski, B. Anderson, W. M. Fawley, et al., Phys. Rev. Lett., 54, No. 9, 889–892. https://doi.org/10.1103/PhysRevLett.54.889

  19. A. V. Savilov, Phys. Rev. E, 64, No. 6, 066501 (2001). https://doi.org/10.1103/PhysRevE.64.066501

    Article  ADS  Google Scholar 

  20. A. V. Savilov, I. V. Bandurkin, and N. Yu. Peskov, Nucl. Instr. Meth. Phys. Res. A, 507, No. 1–2, 158–161 (2003). https://doi.org/10.1016/S0168-9002(03)00862-3

    Article  ADS  Google Scholar 

  21. S. V. Kuzikov and A. V. Savilov, Phys. Plasmas, 25, No. 11, 113114 (2018). https://doi.org/10.1063/1.5049880

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Savilov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 64, No. 6, pp. 470–483, June 2021. Russian DOI: 10.52452/00213462_2021_64_06_470

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martyanov, I.V., Savilov, A.V. “Cooling” of an Electron Bunch in the Regime of Sectioned Trapping of Electrons by the Excited Wave Fields. Radiophys Quantum El 64, 422–434 (2021). https://doi.org/10.1007/s11141-022-10144-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-022-10144-9

Navigation