Skip to main content
Log in

X-Ray Emission from Utracool Stars

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We study two possibilities of the origin of quiescent X-ray emission from ultracool stars using the examples of brown dwarfs TVLM 513-46546 and VB 10: (a) radiation from hot coronas and (b) radiation from a system of magnetic loops filled with a sufficiently dense hot plasma heated due to the dissipation of electric currents flowing in the loops. The parameters of the corona, as well as the parameters of the loops and their number, which are necessary for the implementation of the observed X-ray emission measure, have been determined. For the studied brown dwarfs, the generation of X-rays by a set of hot loops is energetically more favorable than in the case of a hot corona, which was also confirmed by the results of the analysis of quiescent microwave radiation from the brown dwarf TVLM 513-46546.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Nugent and G. Garmire, Astrophys. J., 226, L83–L85 (1978). https://doi.org/10.1086/182836

    Article  ADS  Google Scholar 

  2. R. E. Gershberg, N. I. Kliorin, L. A. Pustil’nik, and A. A. Shlyapnikov, Physics of Medium- and Low-mass Stars with Solar-type Activity [in Russian], Fizmatlit, Moscow (2020).

  3. M. S. Giampapa, R. Rosner, V. Kashyap, et al., Astrophys. J., 463, 707–725 (1996). https://doi.org/10.1086/177284

    Article  ADS  Google Scholar 

  4. T. A. Fleming, Astrophys. J., 504, No. 1, 461–467 (1998). https://doi.org/10.1086/306066

    Article  ADS  Google Scholar 

  5. R. Neuhäuser and F. Comeron, Science, 282, No. 5386, 83–85 (1998). https://doi.org/10.1126/science.282.5386.83

    Article  ADS  Google Scholar 

  6. R. Neuhäuser, C. Briceno, F. Comeron, et al., Astron. Astrophys., 343, 883–893 (1999).

    ADS  Google Scholar 

  7. T. A. Fleming, M. S. Giampapa, and J. H. M. M. Schmitt, Astrophys. J., 533, No. 1, 372–377 (2000). https://doi.org/10.1086/308657

    Article  ADS  Google Scholar 

  8. R. E. Rutledge, G. Basri, E. L. Martin, and L. Bildsten, Astrophys. J., 538, No. 2, L141–L145 (2000). https://doi.org/10.1086/312817

    Article  ADS  Google Scholar 

  9. K. Imanishi, M. Tsujimoto, and K. Koyama, Astrophys. J., 563, No. 1, 361–366 (2001). https://doi.org/10.1086/323697

    Article  ADS  Google Scholar 

  10. S. J. Wolk, IAU Symp. Brown Dwarfs, 211, 447–450 (2003).

    ADS  Google Scholar 

  11. Y. Tsuboi, Y. Maeda, and E. D. Fiegelson, Astrophys. J., 587, No. 1, L51–L54 (2003). https://doi.org/10.1086/375017

    Article  ADS  Google Scholar 

  12. T. A. Fleming, M. S. Giampapa, and D. Garza, Astrophys. J., 594, No. 2, 982–986 (2003). https://doi.org/10.1086/376968

    Article  ADS  Google Scholar 

  13. E. Berger, J. E. Gizis, M. S. Giampapa, et al., Astrophys. J., 673, 1080 (2008). https://doi.org/10.1086/524769

    Article  ADS  Google Scholar 

  14. E. Berger, G. Basri, J. E. Gizis, et al., Astrophys. J., 676, No. 2, 1307–1318 (2008). https://doi.org/10.1086/529131

    Article  ADS  Google Scholar 

  15. E. L. Martín and H. Bouy, New Astronomy, 7, No. 8, 595–602 (2002). https://doi.org/10.1016/S1384-1076(02)00178-1

    Article  ADS  Google Scholar 

  16. B. Stelzer and R. Neuhäuser, IAU Symp. Brown Dwarfs, 211, 443–446 (2003).

    ADS  Google Scholar 

  17. H. Bouy, Astron. Astrophys., 424, No. 2, 619–625 (2004). https://doi.org/10.1051/0004-6361:20040016

    Article  ADS  Google Scholar 

  18. D. J. Mullan, M. Mathioudakis, D. S. Bloomfeld, and D. J. Christian, Astrophys. J. Suppl. Ser., 164, No. 1, 173–201 (2006). https://doi.org/10.1086/502629

    Article  ADS  Google Scholar 

  19. V. V. Zaitsev and P. V. Kronshtadtov, Radiophys. Quantum Electron., 59, No. 3, 169–176 (2016). https://doi.org/10.1007/s11141-016-9687-5

    Article  ADS  Google Scholar 

  20. E. Berger, G. Basri, T. A. Fleming, et al., Astrophys. J., 709, No. 2, 332–341 (2010). https://doi.org/10.1088/0004-637X/709/1/332

    Article  ADS  Google Scholar 

  21. R. A. Osten, S. L. Hawley, T. S. Bastian, and I. N. Reid, Astrophys. J., 637, No. 1, 518–521 (2006). https://doi.org/10.1086/498345

    Article  ADS  Google Scholar 

  22. V. V. Zaitsev and A. V. Stepanov, Geomag. Aeron., 58, 1144–1148 (2018). https://doi.org/10.1134/S0016793218080212

    Article  Google Scholar 

  23. M. Kuperus, J. A. Ionson, and D. S. Spicer, Ann. Rev. Astron. Astrophys., 19, 7–40 (1981). https://doi.org/10.1146/annurev.aa.19.090181.000255

    Article  ADS  Google Scholar 

  24. D. S. Spicer, in: P. Ulmschneider, E. R. Priest, and R. Rosner (eds.), Proc. Int. Conf. on Mechanisms of Chromospheric and Coronal Heating, June 5–9, 1990, Springer–Verlag, Berlin–Heidelberg (1991), pp. 547–561.

  25. V. V. Zaitsev and K. Shibasaki, Astron. Rep., 49, No. 12, 1009–1017 (2005). https://doi.org/10.1134/1.2139817

    Article  ADS  Google Scholar 

  26. J. T. Schmelz, S. H. Saar, E. E. DeLuca, et al., Astrophys. J. Lett., 693, No. 2, L131–L132 (2009). https://doi.org/10.1088/0004-637X/693/2/L131

    Article  ADS  Google Scholar 

  27. V. V. Zaitsev and K. G. Kislyakova, Astron. Rep., 54, No. 4, 367–373 (2010). https://doi.org/10.1134/S1063772910040086

    Article  ADS  Google Scholar 

  28. V. V. Zaitsev, A. V. Stepanov, and P. V. Kronshtadtov, Sol. Phys., 295, No. 12, 166 (2020). https://doi.org/10.1007/s11207-020-01732-x

    Article  ADS  Google Scholar 

  29. S. M. Rucinsky, Acta Astronomica, 29, No. 2, 203–209 (1979).

    ADS  Google Scholar 

  30. S. Mohanty, G. Basri, F. Shu, and G. Chabrier, Astrophys. J., 571, No. 1, 469–486 (2002). https://doi.org/10.1086/339911

    Article  ADS  Google Scholar 

  31. D. T. Osterbrock, Astrophys. J., 118, 529–546 (1953). https://doi.org/10.1086/145781

    Article  ADS  Google Scholar 

  32. A. V. Stepanov and V. V. Zaitsev, Magnetospheres of the Active Regions of the Sun and Stars [in Russian], Fizmatlit, Moscow (2018).

  33. S. B. Pikel’ner, Fundamentals of Space Electrodynamics [in Russian], Nauka, Moscow (1966).

  34. R. H. Huddlestone and S. L. Leonard, eds., Plasma Diagnostics Techniques, Academic Press, New York (1965).

    Google Scholar 

  35. D. A. Verner and G. J. Ferland, Astrophys. J. Suppl., 103, 467–473 (1996). https://doi.org/10.1086/192284

    Article  ADS  Google Scholar 

  36. E. R. Priest, Solar Magnetohydrodynamics, D. Reidel Publishing Company, Dordrecht, Holland (1982). https://doi.org/10.1007/978-94-009-7958-1

  37. S. M. White, J. Lim, and M. R. Kundu, Astrophys. J., 422, 293–303 (1994). https://doi.org/10.1086/173727

    Article  ADS  Google Scholar 

  38. A. V. Stepanov, Phys. Usp., 46, No. 1, 97–102 (2003). https://doi.org/10.1117/12.501430

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Zaitsev.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 64, No. 6, pp. 419–429, June 2021. Russian DOI: 10.52452/00213462_2021_64_06_419

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaitsev, V.V., Stepanov, A.V. X-Ray Emission from Utracool Stars. Radiophys Quantum El 64, 379–387 (2021). https://doi.org/10.1007/s11141-022-10140-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-022-10140-z

Navigation