Skip to main content
Log in

Formation of Intense Attosecond Pulses in the Sequence of a Resonant Absorber and Active Medium of a Plasma-Based X-Ray Laser Modulated by an Optical Field

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We study the possibility of transforming quasi-monochromatic seeding X-ray radiation into an attosecond pulse train in the system composed of a resonant absorber (the plasma of hydrogen-like ions) and an active medium of a plasma-based X-ray laser (the plasma of identical ions in the excited state), which are modulated by the same optical field. In this case, the formation of pulses occurs in a modulated absorber, while the active medium is used for their subsequent amplification. It is shown that this approach significantly increases the energy of the pulses and improves their shape in comparison with the pulse formation directly in the modulated active medium of an X-ray laser. The obtained analytical solution shows that the pulse formation in the modulated absorber is due to the existence of a multifrequency structure of the resonant radiation, which propagates in the medium without absorption. It is shown, both analytically and numerically, that the spectral–temporal characteristics of the pulses are insensitive to changes in the optical thickness of each medium (absorbing and amplifying) over a wide range. The possibility of forming X-ray pulses with a wavelength of the order of 3.4 nm, having a duration of less than 200 as and a peak intensity exceeding 1013W/cm2, in the plasma of hydrogen-like C5+ ions is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Bressler and M.Chergui, Chem. Rev., 104, No. 4, 1781–1812 (2004). https://doi.org/https://doi.org/10.1021/cr0206667

  2. H. Ki, K.Y.Oang, J. Kim, and H. Ihee, Annu. Rev. Phys. Chem., 68, 473–497 (2017). https://doi.org/https://doi.org/10.1146/annurev-physchem-052516-050851

  3. K. Bennett, M.Kowalewski, J.R.Rouxel, and S.Mukamel, PNAS, 115, No. 26, 6538–6547 (2018). https://doi.org/https://doi.org/10.1073/pnas.1805335115

  4. M. Buzzi, M. Först, R. Mankowsky, and A.Cavalleri, Nat. Rev. Mater ., 3, 299–311 (2018). https://doi.org/https://doi.org/10.1038/s41578-018-0024-9

    Article  ADS  Google Scholar 

  5. P.Wernet, Phil. Trans. R. Soc., 377, No. 2145, 20170464 (2019). https://doi.org/https://doi.org/10.1098/rsta.2017.0464

  6. L.Young, K.Ueda, and M.Gühr, et al., J. Phys. B: At. Mol. Opt. Phys., 51, 032003 (2018). https://doi.org/https://doi.org/10.1088/1361-6455/aa9735

  7. F. Krausz and M. Ivanov, Rev. Mod. Phys., 81, No. 1, 163–234 (2009). https://doi.org/https://doi.org/10.1103/RevModPhys.81.163

  8. M.Wu, S.Chen, S. Camp, et al., J. Phys. B: At. Mol. Opt. Phys., 49, No. 6, 062003 (2016). https://doi.org/https://doi.org/10.1088/0953-4075/49/6/062003

  9. F. Calegari, G. Sansone, S. Stagira, et al., J. Phys. B: At. Mol. Opt. Phys., 49, No. 6, 062001 (2016). https://doi.org/https://doi.org/10.1088/0953-4075/49/6/062001

  10. P.Peng, C.Marceau, and D.M.Villeneuve, Nat. Rev. Phys., 1, 144–155 (2019). https://doi.org/https://doi.org/10.1038/s42254-018-0015-1

  11. E.A. Seddon, J.A. Clarke, D. J.Dunning, et al., Rep. Prog. Phys., 80, No. 11, 115901 (2017). https://doi.org/https://doi.org/10.1088/1361-6633/aa7cca

  12. R. Schoenlein, T.Elsaesser, K. Holldack, et al., Phil. Trans. R. Soc., 377, No. 2145, 20180384 (2019). https://doi.org/https://doi.org/10.1098/rsta.2018.0384

  13. H. Daido, Rep. Prog. Phys., 65, No. 10, 1513–1576 (2002). https://doi.org/https://doi.org/10.1088/0034-4885/65/10/204

  14. Ph. Zeitoun, G. Faivre, S. Sebban, et al., Nature, 431, 426–429 (2004). https://doi.org/https://doi.org/10.1038/nature02883

  15. S. Suckewer and P. Jaegle, Laser Phys. Lett., 6, No. 6, 411–436 (2009). https://doi.org/https://doi.org/10.1002/lapl.200910023

  16. A.Rockwood, Y.Wang, S.Wang, et al., Optica, 5, No. 3, 257–262 (2018). https://doi.org/https://doi.org/10.1364/OPTICA.5.000257

  17. A. Depresseux, E.Oliva, J. Gautier, et al., Nature Photon., 9, 817–821 (2015). https://doi.org/https://doi.org/10.1038/nphoton.2015.225

  18. A. K.Pandey, I.Papagiannouli, F. Sanson, et al., Opt. Express, 28, No. 20, 28924–28941 (2020). https://doi.org/https://doi.org/10.1364/OE.399339

  19. E. Oliva, M. Fajardo, L. Li, et al., Nature Photon., 6, 764–767 (2012). https://doi.org/https://doi.org/10.1038/nphoton.2012.246

  20. P. Zeitoun, E. Oliva, T. T. Le, et al., Appl. Sci ., 3, No. 3, 581–592 (2013). https://doi.org/https://doi.org/10.3390/app3030581

  21. T.R. Akhmedzhanov, V.A.Antonov, A.Morozov, et al., Phys. Rev., 96, No. 3, 033825 (2017). https://doi.org/https://doi.org/10.1103/PhysRevA.96.033825

  22. V. A. Antonov, K.C. Han, T. R. Akhmedzhanov, et al., Phys. Rev. Lett., 123, No. 24, 243903 (2019). https://doi.org/https://doi.org/10.1103/PhysRevLett.123.243903

  23. I.R. Khairulin, V.A.Antonov, M.Yu.Ryabikin, and O.Kocharovskaya, Phys. Rev. Res., 2, No. 2, 023255 (2020). https://doi.org/https://doi.org/10.1103/PhysRevResearch.2.023255

  24. V. A. Antonov, I.R. Khairulin, and O.Kocharovskaya, Phys. Rev., 102, No. 6, 063528 (2020). https://doi.org/https://doi.org/10.1103/PhysRevA.102.063528

  25. I.R. Khairulin, V.A.Antonov, and O. A.Kocharovskaya, Quantum Electron., 50, No. 4, 375–385 (2020). https://doi.org/https://doi.org/10.1070/QEL17290

  26. V. A. Antonov, Y. V. Radeonychev, and O.Kocharovskaya, Phys. Rev., 88, No. 5, 053849 (2013). https://doi.org/https://doi.org/10.1103/PhysRevA.88.053849

  27. Y.Avitzour and S. Suckewer, J. Opt. Soc. Am., 24, No. 4, 819–828 (2007). https://doi.org/https://doi.org/10.1364/JOSAB.24.000819

  28. D. V.Korobkin, C.H.Nam, S. Suckewer, and A.Goltsov, Phys. Rev. Lett., 77, No. 26, 5206–5209 (1996). https://doi.org/https://doi.org/10.1103/PhysRevLett.77.5206

  29. Y. V. Radeonychev, M. D.Tokman, A.G. Litvak, and O.Kocharovskaya, Phys. Rev. Lett., 96, No. 9, 093602 (2006). https://doi.org/https://doi.org/10.1103/PhysRevLett.96.093602

  30. T.R. Akhmedzhanov, V.A.Antonov, and O.Kocharovskaya, J. Phys. B: At. Mol. Opt. Phys., 49, No. 20, 205602 (2016).

    Article  ADS  Google Scholar 

  31. C. Bourassin-Bouchet, S. de Rossi, and F. Delmotte, in: F. Canova and L.Poleto, ed., Optical Technologies for Extreme-Ultraviolet and Soft X-Ray Coherent Sources, Springer Series in Optical Sciences 197, Springer, Berlin, Heidelberg, 151–173 (2015). https://doi.org/https://doi.org/10.1007/978-3-662-47443-3_8

  32. Q. Huang, V. Medvedev, R. van de Kruijs, et al., Appl. Phys. Rev., 4, No. 1, 011104 (2017). https://doi.org/https://doi.org/10.1063/1.4978290

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Antonov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 64, No. 4, pp. 300–319, April 2021. Russian DOI: 10.52452/00213462_2021_64_04_300

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khairulin, I.R., Antonov, V.A. & Kocharovskaya, O.A. Formation of Intense Attosecond Pulses in the Sequence of a Resonant Absorber and Active Medium of a Plasma-Based X-Ray Laser Modulated by an Optical Field. Radiophys Quantum El 64, 272–289 (2021). https://doi.org/10.1007/s11141-021-10130-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-021-10130-7

Navigation