Skip to main content
Log in

Specific Features of the Interaction of Microwave Radiation with Magnetic Colloids

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We study, both experimentally and theoretically, propagation of electromagnetic waves in the microwave range (10.5 GHz) through homogeneous magnetic colloids in a magnetic field. The studies were carried out with partial filling of a rectangular waveguide with tested samples, namely, colloids with magnetite single-domain particles and kerosene as a dispersion medium. The features of the dependences of the transmission coefficient of microwave radiation on the external magnetic field for various volume concentrations of the dispersed phase in the sample are revealed. The model of an ensemble of noninteracting particles was used to interpret the results we obtained. The concentration limits of applicability of the model have been determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. E. Fertman, Magnetic Fluids [in Russian], Vysheishaya Shkola, Minsk (1988).

  2. É.Ya.Blum, M. M. Maiorov, and A.O.Tsebers, eds., Magnetic Fluids [in Russian], Zinatne, Riga (1986).

  3. R.E. Rosensweig, Ferrohydrodynamics, Cambridge University Press, New York (1985).

    Google Scholar 

  4. B. M. Berkovsky, V. F. Medvedev, and M. S. Krakov, eds., Magnetic Fluids [in Russian], Khimiya, Moscow (1989).

  5. I. Torres-Díaz and C. Rinaldi, Soft Matter, 10, No. 43, 8584–8602 (2014). https://doi.org/10.1039/C4SM01308E

    Article  ADS  Google Scholar 

  6. A. Joseph and S. Mathew, ChemPlusChem., 79, No. 10, 1382–1420 (2014). https://doi.org/10.1002/cplu.201402202

    Article  MathSciNet  Google Scholar 

  7. J. C. Anderson and B. Donovan, Proc. Phys. Soc., 73, No. 4, 593–599 (1959). https://doi.org/10.1088/0370-1328/73/4/308

    Article  ADS  Google Scholar 

  8. P. C. Fannin, T. Relihan, and S. W. Charles, J. Phys., 28, No. 10, 2003–2006 (1995). https://doi.org/10.1088/0022-3727/28/10/001

    Article  ADS  Google Scholar 

  9. D. C. Usanov, Al. V. Skripal, An. V. Skripal, and A. E.Postel’ga, Tech. Phys., 54, No. 9, 1389–1391 (2009). https://doi.org/10.1134/S1063784209090229

  10. D.C. Usanov, Al. V. Skripal, An.V. Skripal, and A. V. Kurganov, Tech. Phys., 46, No. 12, 1514–1517 (2001). https://doi.org/10.1134/1.1427984

  11. D. C. Usanov, Al. V. Skripal, An.V. Skripal, et al., Tech. Phys., 51, No. 11, 1520–1523 (2006). https://doi.org/10.1134/S1063784206110211

  12. Y. L. Raikher and V. I. Stepanov, Phys. Rev. B, 51, No. 22, 16428–16431 (1995). https://doi.org/10.1103/PhysRevB.51.16428

    Article  ADS  Google Scholar 

  13. R. S. Gekht, V.A. Ignatchenko, Y. L. Raikher, and M. I. Shliomis, Sov. Phys. JETP, 43, No. 4, 677–682 (1976).

    ADS  Google Scholar 

  14. Yu. L. Raikher and M. I. Shliomis, Sov. Phys. JETP, 40, 526–539 (1975).

    ADS  Google Scholar 

  15. D. A. Usanov, A.E.Postel’ga, and S.V.Altynbaev, Tech. Phys., 58, No. 11, 1578–1581 (2013). https://doi.org/10.1134/S1063784213110273

  16. P. C. Fannin, B. K.P. Scaife, A.T.Giannitsis, and C. Mac Oireachtaigh, J. Magn. Magn. Mater., 289, 159–161 (2005). https://doi.org/10.1016/j.jmmm.2004.11.046

    Article  ADS  Google Scholar 

  17. P. C. Fannin, J. Molecular Liquids, 114, 79–87 (2004). https://doi.org/10.1016/j.molliq.2004.02.020

    Article  Google Scholar 

  18. I. O. Kotov, ”Microwave method and device for monitoring the dielectric permittivity and concentration of ferromagnetic fluids“ [in Russian], PhD Thesis, Tambov State Technical University, Tambov (2012).

  19. Y. I. Dikansky, Magn. Gidrodin., 3, 33–36 (1982).

    Google Scholar 

  20. A. F. Pshenichnikov and A.V. Lebedev, Colloid J., 67, No. 2, 189–200 (2005). https://doi.org/10.1007/s10595-005-0080-x

    Article  Google Scholar 

  21. A.V. Lebedev, V. I. Stepanov, A.A.Kuznetsov, et al., Phys. Rev. E., 100, No. 3, 032605 (2019). https://doi.org/10.1103/PhysRevE.100.032605

    Article  ADS  Google Scholar 

  22. R. S. Gekht and V. I. Ignatchenko, Sov. Phys. JETP, 49, No. 1, 84–94 (1979).

    ADS  Google Scholar 

  23. V. V. Nikol’sky, The Theory of the Electromagnetic Field [in Russian], Vysshaya Shkola, Moscow (1961).

  24. A. G. Gurevich, Ferrites at Ultrahigh Frequencies [in Russian], Fizmatlit, Moscow (1960).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. D. Turkin.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 64, No. 4, pp. 276–286, April 2021. Russian DOI: 10.52452/00213462_2021_64_04_276

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turkin, S.D., Dikansky, Y.I. Specific Features of the Interaction of Microwave Radiation with Magnetic Colloids. Radiophys Quantum El 64, 251–259 (2021). https://doi.org/10.1007/s11141-021-10128-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-021-10128-1

Navigation