Skip to main content
Log in

Optimization of the Magnetron-Injection Gun for a High-Power Planar Millimeter-Wave Gyrotron

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We have developed a method for optimization of a planar magnetron-injection gun (MIG) with allowance for the three-dimensional configuration of the electron-optical system and the electron drift in crossed fields, which is transverse to the direction of the translational beam propagation direction. Recommendations are given on how to minimize the spread of transverse velocities with retaining the pitch factor, which is acceptable for efficient electron-wave interaction. The influence of roughness of the emission surface on the parameters and the operation regime of the planar MIG is studied. The optimal electrode configurations of a planar MIG have been found for a gyrotron with an operating frequency of 140 GHz at the first cyclotron-frequency harmonic with an accelerating voltage of 50 kV, a current of 30 A, and a magnetic-field compression of 36. These confirm good electric strength of the gun and manufacturability of the design of the planar electron-optical system. The obtained calculated distribution of the transverse velocities in a ribbon helical electron beam ensures the possibility of selective excitation of the high-order working mode TE11, 1 of a planar electrodynamic system and an output radiation power of several hundreds of kilowatts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. A. Flyagin, ed., Gyrotrons [in Russian], Inst. Appl. Phys., Gorky (1980).

  2. A. V. Gaponov-Grekhov, ed., Gyrotron [in Russian], Inst. Appl. Phys., Gorky (1981).

  3. A. V. Gaponov, M. I. Petelin, and V.K.Yulpatov, Radiophys. Quantum Electron., 10, Nos. 9–10, 794–813 (1967). https://doi.org/10.1007/BF01031607

    Article  ADS  Google Scholar 

  4. N. S. Ginzburg, N. A. Zavol’skii, G. S. Nusinovich and A. S. Sergeev, Radiophys. Quantum Electron., 29, No. 1, 89–97 (1986). https://doi.org/10.1007/BF01034008

    Article  ADS  Google Scholar 

  5. T. Idehara, H. Tsuchiya, O. Watanabe, et al., Int. J. Infrared Millim. Waves, 27, 319–331 (2006). https://doi.org/10.1007/s10762-006-9084-9

    Article  ADS  Google Scholar 

  6. M.Yu.Glyavin, A.G. Luchinin, and G.Yu. Golubiatnikov, Phys. Rev. Lett., No. 1, 100, 015101 (2008). https://doi.org/10.1103/PhysRevLett.100.015101

    Article  ADS  Google Scholar 

  7. M.Yu.Glyavin and A.G. Luchinin, Terahertz Sci. Technol., 2, No. 4, 150–155 (2009). https://doi.org/10.11906/TST.150-155.2009.12.16

    Article  Google Scholar 

  8. M.Yu.Glyavin, A.G. Luchinin, V. N. Manuilov, et al., Radiophys. Quantum Electron. 54, No. 8, 600–608 (2012). https://doi.org/10.1007/s11141-012-9319-7

    Article  ADS  Google Scholar 

  9. N. S. Ginzburg, I.V. Zotova, V.Yu. Zaslavskii, et al., Tech. Phys. Lett., 37, No. 1, 79–82 (2011). https://doi.org/10.1134/S1063785011010196

    Article  ADS  Google Scholar 

  10. N. S. Ginzburg, I.V. Zotova, A. S. Sergeev, et al., Phys. Rev. Lett., 108, No. 10, 105101 (2012). https://doi.org/10.1103/PhysRevLett.108.105101

    Article  ADS  Google Scholar 

  11. V.Yu. Zaslavsky, N. S. Ginzburg, M.Yu.Glyavin, et al., Phys. Plasmas, 20, No. 4, 043103 (2013). https://doi.org/10.1063/1.4799819

    Article  ADS  Google Scholar 

  12. V.Yu. Zaslavsky, I.V. Zheleznov, N. S. Ginzburg, et al., IEEE Trans. Electron Devices, 68, No. 3, 1267–1270 (2021). https://doi.org/10.1109/TED.2020.3049108

    Article  ADS  Google Scholar 

  13. V. N. Manuilov, V.Yu. Zaslavsky, N. S. Ginzburg, et al., Phys. Plasmas, 21, No. 2, 023106 (2014). https://doi.org/10.1063/1.4864630

    Article  ADS  Google Scholar 

  14. P. V. Krivosheev, V.K. Lygin, V.N.Manuilov, and Sh. E. Tsimring, Int. J. Infrared Millim. Waves, 22, 1119–1145 (2001). https://doi.org/10.1023/A:1015006230396

    Article  Google Scholar 

  15. https://www.3ds.com/

  16. Sh. E. Tsimring, in: Lectures on Microwave Electronics (3rd Winter Workshop School for Engineers), Pt. 4 [in Russian], Saratov State Univ., Saratov (1974), pp. 3–94.

  17. Sh. E. Tsimring, Electron Beams and Microwave Vacuum Electronics, Wiley, Hoboken, NJ (2007).

    Google Scholar 

  18. Sh. E. Tsimring, Radiophys. Quantum Electron., 15, No. 8, 952–961 (1972). https://doi.org/10.1007/BF01030951

    Article  ADS  Google Scholar 

  19. K. A. Leshcheva and V. N. Manuilov, Usp. Prikl. Fiz., 7, No. 3, 298–308 (2019).

    Google Scholar 

  20. V. K. Lygin, Int. J. Infrared Millim. Waves, 16, No. 2, 363–376 (1995). https://doi.org/10.1007/BF02096323

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Yu. Zaslavsky.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 64, No. 4, pp. 253–264, April 2021. Russian DOI: 10.52452/00213462_2021_64_04_253

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manuilov, V.N., Zaslavsky, V.Y., Kuftin, A.N. et al. Optimization of the Magnetron-Injection Gun for a High-Power Planar Millimeter-Wave Gyrotron. Radiophys Quantum El 64, 229–239 (2021). https://doi.org/10.1007/s11141-021-10126-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-021-10126-3

Navigation