Skip to main content
Log in

Kirkwood and Wigner Quantum Densities, Their Properties, and Applications in Radiophysics

  • Published:
Radiophysics and Quantum Electronics Aims and scope

The Wigner and Kirkwood functions are widely used for signal processing. We review their properties and representations. The Wigner function calculation requires significant computational resources. In this work, we present a fast algorithm for finding the smoothed Wigner function, which is based on the averaging of the Kirkwood function calculated for the fractional Fourier transforms of a signal for different phase-plane rotation angles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.G.Kirkwood, Phys. Rev., 44, 31–37 (1933). https://doi.org/10.1103/PhysRev.44.31

    Article  ADS  Google Scholar 

  2. P. A. M. Dirac, Proc. Camb. Philos. Soc., 26, No. 3, 376–395 (1930). https://doi.org/10.1017/S0305004100016108

    Article  ADS  Google Scholar 

  3. H. Weyl, The Theory of Groups and Quantum Mechanics, Dover, New York (1931).

    MATH  Google Scholar 

  4. W. Heisenberg, Physik. Zeitschr., 32, 737–740 (1931).

    Google Scholar 

  5. E.P. Wigner, Phys. Rev., 40, 749–759 (1932). https://doi.org/10.1103/PhysRev.40.749

    Article  ADS  Google Scholar 

  6. V. I. Tatarskii, Sov. Phys. Usp., 26, No. 4, 311–327 (1983). DOI: https://doi.org/10.1070/PU1983v026n04ABEH004345

    Article  ADS  MathSciNet  Google Scholar 

  7. J. Ville, Cables et Transmission, 2A, 61–74 (1948).

    Google Scholar 

  8. L. Cohen, Proc. IEEE, 77, No. 7, 941–981 (1989). https://doi.org/10.1109/5.30749

    Article  ADS  Google Scholar 

  9. B. Boashash, ed., Time Frequency Signal Analysis and Processing: A Comprehensive Reference, Elsevier, Amsterdam (2003).

    Google Scholar 

  10. V. I. Klyatskin, Stochastic Equations: Theory and its Applications to Acoustics, Hydrodynamics, and Radiophysics [in Russian], Fizmatlit, Moscow (2008).

  11. A. L. Virovlyansky, The Ray Theory of the Long-Distance Propagation of Sound in the Ocean [in Russian], Inst. Appl. Phys., Nizhny Novgorod (2006).

  12. M. E. Gorbunov, Physical and Mathematical Principles of Satellite Radio-Occultation Sensing of the Earth’s Atmosphere [in Russian], GEOS, Moscow (2019).

  13. M. A. Alonso, Adv. Opt. Photon., 3, 272–365 (2011). https://doi.org/10.1364/AOP.3.000272

    Article  Google Scholar 

  14. P. A. Mello and M. Revzen, Phys. Rev. A, 89, 012106 (2014). https://doi.org/10.1103/PhysRevA.89.012106

    Article  ADS  Google Scholar 

  15. D. Mustard, J. Austral. Math. Soc. Ser. B, 38, No. 2, 209–219 (1996). https://doi.org/10.1017/S0334270000000606

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Gorbunov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 64, No. 2, pp. 153–162, February 2021. Russian DOI: 10.52452/00213462_2021_64_02_153

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorbunov, M.E., Koval, O.A. Kirkwood and Wigner Quantum Densities, Their Properties, and Applications in Radiophysics. Radiophys Quantum El 64, 140–148 (2021). https://doi.org/10.1007/s11141-021-10118-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-021-10118-3

Navigation