Skip to main content
Log in

Radiation of Whistler Waves from a Source with a Rotating Near-Zone Magnetic Field in a Magnetoplasma

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We study radiation from given nonsymmetric currents which are located in a homogeneous cold magnetoplasma and produce a rotating near-zone magnetic field. Based on expansion of the excited field in terms of cylindrical vector eigenfunctions of a magnetoplasma, we obtain rigorous representations of the field and the total radiated power of the source with a rotating magnetic dipole moment, which ensures the formation of the corresponding near-zone magnetic field. For the nonresonant region of the whistler frequency range, calculations are performed of the field structure and the radiated power of such a source, which can be made in the form of two electrically small loop antennas with perpendicular symmetry axes and quadrature-phased alternating electric currents. The behavior of the radiation characteristics of such a source are discussed, including the features of excitation of waves with helical phase fronts in the plasma by this source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V.V.Akindinov, S. M. Eremin, and I.V. Lishin, Radiotekh. Élektron., 30, No. 5, 833–850 (1985).

    ADS  Google Scholar 

  2. E.A. Mareev and Yu.V. Chugunov, Antennas in Plasmas [in Russian], Inst. Appl. Phys., Nizhny Novgorod (1991).

  3. R. L. Stenzel, J. Geophys. Res., 104, No. A7, 14379–14395 (1999). https://doi.org/10.1029/1998JA900120

    Article  ADS  Google Scholar 

  4. K. G. Balmain, IEEE Trans. Antennas Propag., AP-12, No. 5, 605–617 (1964). https://doi.org/10.1109/TAP.1964.1138278

    Article  ADS  Google Scholar 

  5. S.R. Seshadri, Proc. IEE, 112, No. 10, 1856–1868 (1965). https://doi.org/10.1049/piee.1965.0305

    Article  Google Scholar 

  6. T.N. C. Wang and T. F. Bell, Radio Sci., 4, No. 2, 167–177 (1969). https://doi.org/10.1029/RS004i002p00167

    Article  ADS  Google Scholar 

  7. T.N. C. Wang and T. F. Bell, Radio Sci., 5, No. 3, 605–610 (1970). https://doi.org/10.1029/RS005i003p00605

    Article  ADS  Google Scholar 

  8. T.N. C. Wang, J. Geophys. Res., 77, No. 31, 6168–6180 (1972). https://doi.org/10.1029/JA077i031p06168

    Article  ADS  Google Scholar 

  9. V.P. Dokuchaev, V. V. Tamoikin, and Yu.V.Chugunov, Radiophys. Quantum Electron., 19, No. 8, 792–798 (1976). https://doi.org/10.1007/BF01043471

    Article  ADS  Google Scholar 

  10. N. S. Bellyustin, Radiophys. Quantum Electron., 21, No. 1, 13–22 (1978). https://doi.org/10.1007/BF01039948

    Article  ADS  Google Scholar 

  11. T. F. Bell and T.N.C.Wang, IEEE Trans. Antennas Propag., AP-19, No. 4, 517–522 (1971). https://doi.org/10.1109/TAP.1971.1139957

    Article  ADS  Google Scholar 

  12. T. N. C. Wang and T. F. Bell, IEEE Trans. Antennas Propag., AP-20, No. 3, 394–398 (1972). https://doi.org/10.1109/TAP.1972.1140212

    Article  ADS  Google Scholar 

  13. T. N. C. Wang and T. F. Bell, IEEE Trans. Antennas Propag., AP-21, No. 5, 745–746 (1973). https://doi.org/10.1109/TAP.1973.1140562

    Article  ADS  Google Scholar 

  14. T. M. Zaboronkova, I. G. Kondrat’ev, and A. V. Kudrin, Radiophys. Quantum Electron., 34, No. 9, 784–790 (1991). https://doi.org/10.1007/BF01036855

    Article  ADS  Google Scholar 

  15. T. M. Zaboronkova, I. G. Kondrat’ev, and A. V. Kudrin, Radiophys. Quantum Electron., 35, No. 8, 407–412 (1992). https://doi.org/10.1007/BF01047213

    Article  ADS  Google Scholar 

  16. I. G. Kondrat’ev, A. V. Kudrin, and T. M. Zaboronkova, Radio Sci., 27, No. 2, 315–324 (1992). https://doi.org/10.1029/91RS02919

    Article  ADS  Google Scholar 

  17. T. M. Zaboronkova, A. V. Kostrov, A. V. Kudrin, et al., Radiophys. Quantum Electron., 39, No. 2, 132–139 (1996). https://doi.org/10.1007/BF02275367

    Article  ADS  Google Scholar 

  18. A. V. Kudrin, N.M. Shmeleva, O. E. Ferencz, and T.M. Zaboronkova, Phys. Plasmas, 19, No. 6, 063301 (2012). https://doi.org/10.1063/1.4725508

    Article  ADS  Google Scholar 

  19. D. E. Hastings, A. Barnett, and S. Olbert, J. Geophys. Res., 93, No.A3, 1945–1960 (1988). https://doi.org/10.1029/JA093iA03p01945

    Article  ADS  Google Scholar 

  20. M. Dobrowolny and E. Melchioni, J. Geophys. Res., 98, No. A8, 13761–13778 (1993). https://doi.org/10.1029/93JA00640

    Article  ADS  Google Scholar 

  21. H. G. James and K. G. Balmain, Radio Sci., 36, No. 6, 1631–1644 (2001). https://doi.org/10.1029/2000RS002583

    Article  ADS  Google Scholar 

  22. S. W. Lee and Y. T. Lo, IEEE Trans. Antennas Propag., AP-15, No. 2, 244–252 (1967). https://doi.org/10.1109/TAP.1967.1138871

    Article  ADS  Google Scholar 

  23. S. W. Lee, Radio Sci., 4, No. 2, 179–189 (1969). https://doi.org/10.1029/RS004i002p00179

    Article  ADS  Google Scholar 

  24. Yu.V.Chugunov, Radiophys. Quantum Electron., 12, No. 6, 661–664 (1969). https://doi.org/10.1007/BF01031245

    Article  ADS  Google Scholar 

  25. S. M. Eremin, Radiotekh. Élektron., 33, No. 9, 1852–1861 (1988).

    ADS  Google Scholar 

  26. T. M. Zaboronkova, A.V. Kudrin, and E.Yu.Petrov, Radiophys. Quantum Electron., 42, No. 8, 660–673 (1999). https://doi.org/10.1007/BF02676852

    Article  ADS  Google Scholar 

  27. A.V. Kudrin, E.Yu.Petrov, G.A. Kyriacou, and T. M. Zaboronkova, Prog. Electromagn. Res., 53,135–166 (2005). https://doi.org/10.2528/PIER04090101

    Article  Google Scholar 

  28. A. V. Kudrin, E.Yu.Petrov, and T.M. Zaboronkova, J. Electromagn. Waves Appl., 15, No. 3, 345–378 (2001). https://doi.org/10.1163/156939301X00517

    Article  Google Scholar 

  29. T. M. Zaboronkova, A.V. Kudrin, and E.Yu.Petrov, J. Commun. Technol. Electron., 57, No. 3, 296–300 (2012). https://doi.org/10.1134/S1064226912020131

    Article  Google Scholar 

  30. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, J.P.Woerdman, Phys. Rev. A, 45, No. 11, 8185–8189 (1992). https://doi.org/10.1103/PhysRevA.45.8185

    Article  ADS  Google Scholar 

  31. B. Thidé, H. Then, J. Sjöholm, et al., Phys. Rev. Lett., 99, No. 8, 087701 (2007). https://doi.org/10.1103/PhysRevLett.99.087701

    Article  ADS  Google Scholar 

  32. B. A. Knyazev and V.G. Serbo, Phys. Usp., 61, No. 5, 449–479 (2018). https://doi.org/10.3367/UFNe.2018.02.038306

    Article  ADS  Google Scholar 

  33. T. B. Leyser, L. Norin, M.McCarrick, et al., Phys. Rev. Lett., 102, No. 6, 065004 (2009). https://doi.org/10.1103/PhysRevLett.102.065004

    Article  ADS  Google Scholar 

  34. J. T. Mendonça, S. Ali, and B. Thidé, Phys. Plasmas, 16, No. 11, 112103 (2009). https://doi.org/10.1063/1.3261802

    Article  ADS  Google Scholar 

  35. M. K. Ayub, S. Ali, and J.T.Mendonça, Phys. Plasmas, 18, No. 10, 102117 (2011). https://doi.org/10.1063/1.3655429

    Article  ADS  Google Scholar 

  36. J. T. Mendonça, Phys. Plasmas, 19, No. 11, 112113 (2012). https://doi.org/10.1063/1.4769030

    Article  ADS  Google Scholar 

  37. J. T. Mendonça and J.P. S. Bizarro, Plasma Phys. Control. Fusion., 59, No. 5, 054003 (2017). https://doi.org/10.1088/1361-6587/aa6231

    Article  ADS  Google Scholar 

  38. A. V. Karavaev, N.A.Gumerov, K. Papadopoulos K., et al., Phys. Plasmas, 17, No. 1, 012102 (2010). https://doi.org/10.1063/1.3274916

  39. R. L. Stenzel and J.M.Urrutia, Phys. Rev. Lett., 114, No. 20, 205005 (2015). https://doi.org/10.1103/PhysRevLett.114.205005

    Article  ADS  Google Scholar 

  40. J. M. Urrutia and R.L. Stenzel, Phys. Plasmas, 22, No. 9, 092111 (2015). https://doi.org/10.1063/1.4930105

    Article  ADS  Google Scholar 

  41. R. L. Stenzel and J.M.Urrutia, Phys. Plasmas, 22, No. 9, 092112 (2015). https://doi.org/10.1063/1.4930106

    Article  ADS  Google Scholar 

  42. R. L. Stenzel and J.M.Urrutia, Phys. Plasmas, 22, No. 9, 092113 (2015). https://doi.org/10.1063/1.4930107

    Article  ADS  Google Scholar 

  43. J. M. Urrutia and R. L. Stenzel, Phys. Plasmas, 23, No. 5, 052112 (2016). https://doi.org/10.1063/1.4949348

    Article  ADS  Google Scholar 

  44. R. L. Stenzel and J.M.Urrutia, Phys. Plasmas, 25, No. 3, 032112 (2018). https://doi.org/10.1063/1.5017627

    Article  ADS  Google Scholar 

  45. L. B. Felsen and N. Marcuwitz, Radiation and Scattering of Waves, Wiley, Hoboken, NJ (2003).

    Google Scholar 

  46. I. G. Kondrat’ev, A.V. Kudrin, and T. M. Zaboronkova, Electrodynamics of Density Ducts in Magnetized Plasmas, Gordon and Breach, Amsterdam (1999).

    MATH  Google Scholar 

  47. I. N. Toptygin and G.D. Fleishman, Phys. Usp., 51, No. 4, 363–374 (2008). https://doi.org/10.1070/PU2008v051n04ABEH006472

    Article  ADS  Google Scholar 

  48. S. M. Eremin, Radiotekh. Élektron., 32, No. 5, 922–930 (1987).

    ADS  Google Scholar 

  49. E. Arbel and L. B. Felsen, in: E. C. Jordan, ed., Electromagnetic Theory and Antennas, Pt. 1, Pergamon Press, Oxford (1963), pp. 391–459.

    Google Scholar 

  50. A. F. Kazyulin, Radiotekh. Élektron., 9, No. 10, 1889–1891 (1964).

    Google Scholar 

  51. I. G. Kondrat’ev and V. I. Talanov, Zh. Tekh. Fiz., 35, No. 3, 571–573 (1965).

    Google Scholar 

  52. R. F. Harrington and A. T. Villeneuve, IRE Trans. Microwave Theory Techn., MTT-6, No. 3, 308–310 (1958). https://doi.org/10.1109/TMTT.1958.1124563

    Article  ADS  Google Scholar 

  53. V. L. Ginzburg, The Propagation of Electromagnetic Waves in Plasmas, Pergamon Press, Oxford (1970).

    Google Scholar 

  54. V.V. Shevchenko, Continuous Transitions in Open Waveguides, Golem Press, Boulder, CO (1971).

    Google Scholar 

  55. T. M. Zaboronkova, A.V. Kudrin, and M.Yu. Lyakh, Radiophys. Quantum Electron., 46, Nos. 5–6, 407–424 (2003). https://doi.org/10.1023/A:1026371902173

    Article  ADS  Google Scholar 

  56. I. S. Gradshtein and I.M.Ryzhik, Tables of Integrals, Sums, Series, and Products, Academic Press, New York (2007).

    Google Scholar 

  57. I. G. Kondrat’ev, A. V. Kudrin, and T. M. Zaboronkova, J. Atmos. Sol.-Terr. Phys., 59, No. 18, 2475–2488 (1997). https://doi.org/10.1016/S1364-6826(96)00141-1

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kudrin.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 64, No. 2, pp. 110–131, February 2021. Russian DOI: 10.52452/00213462_2021_64_02_110

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaboronkova, T.M., Zaitseva, A.S., Kudrin, A.V. et al. Radiation of Whistler Waves from a Source with a Rotating Near-Zone Magnetic Field in a Magnetoplasma. Radiophys Quantum El 64, 101–120 (2021). https://doi.org/10.1007/s11141-021-10115-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-021-10115-6

Navigation