Skip to main content
Log in

Physics and Mathematics of Electric Streamers

  • Published:
Radiophysics and Quantum Electronics Aims and scope

A streamer is a kind of electric discharge in which there forms a column of ionized matter growing due to the amplified field at its tip. Streamers in air are an important stage of spark discharge, in particular lightning, and constitute sprites (mesospheric discharges). Streamers in large discharges (in sprites, in laboratory experiments with a meter-scale inter-electrode gap and megavolt potential difference, and in lightning) create large branched structures. Microscopic processes, which are responsible for propagation of streamers, are ionization, attachment, electron drift and diffusion, photoionization, and ion processes (detachment, recombination, etc.). Their numerical modeling reproduces the columnar shape of the ionization front, but does not allow to identify the physical and mathematical mechanisms of how the streamer radius and speed are chosen and of branching. A streamer may be described by a finite set of parameters, such as its speed and the radius of its head. The relations between these parameters are known, but do not constitute a complete set of equations: one free parameter (the radius) remains, which defines a streamer “mode” (the terminology is chosen by analogy with small transverse harmonic perturbations of a flat ionization front). As an additional requirement which would give a unique solution, we propose the choice of the most unstable mode that has the maximum speed. Thus, we treat the streamer as a nonlinear instability. This approach yields the results which agree with experimental measurements of streamer speeds, as well as of the streamer propagation threshold field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. L. Allen and P. N. Mikropoulos, J. Phys. D: Appl. Phys., 32, No. 8, 913–919 (1999). https://doi.org/10.1088/0022-3727/32/8/012

  2. P. O. Kochkin, A. P. J. van Deursen, and U. Ebert, J. Phys. D: Appl. Phys., 47, No. 14, 145203 (2014). https://doi.org/10.1088/0022-3727/47/14/145203

  3. L. B. Loeb and J. M. Meek, The Mechanism of the Electric Spark, Stanford University Press, Stanford University, California, (1941).

  4. G. J. Fishman, P. N. Bhat, R. Malozzi, et al., Science, 264, 1313–1316 (1994). https://doi.org/10.1126/science.264.5163.1313

    Article  ADS  Google Scholar 

  5. P. O. Kochkin, C. V. Nguyen, A. P. J. van Deursen, and U. Ebert, J. Phys. D: Appl. Phys., 45, No. 42, 425202 (2012). https://doi.org/10.1088/0022-3727/45/42/425202

  6. P. O. Kochkin, A. P. J. van Deursen, and U. Ebert, J. Phys. D: Appl. Phys., 48, No. 2, 025205 (2015). https://doi.org/10.1088/0022-3727/48/2/025205

  7. E. M. Bazelyan and Y. P. Raizer, Spark Discharge, CRC Press, New York, (1998).

  8. R. Morrow and J. J. Lowke, J. Phys. D: Appl. Phys., 30, 614–627 (1997). https://doi.org/10.1088/0022-3727/30/4/017

  9. Y. P. Raizer, Gas discharge physics, Springer, Berlin (1991).

  10. J. Teunissen and U. Ebert, J. Phys. D: Appl. Phys., 50, 474001 (2017). https://doi.org/10.1088/1361-6463/aa8faf

  11. O. Chanrion and T. Neubert, J. Comput. Phys., 227, No. 15, 7222–7245, (2008). https://doi.org/10.1016/j.jcp.2008.04.016

    Article  ADS  Google Scholar 

  12. B. Bagheri, J. Teunissen, U. Ebert, et al., Plasma Sources Sci. Technol., 27, 095002, (2018). https://doi.org/10.1088/1361-6595/aad768

  13. V. P. Pasko, in: M. Füllekrug, E. A. Mareev, and M. J. Rycroft, eds., NATO Science Ser. II: Mathematics, Physics and Chemistry, V. 225. Sprites, Elves and Intense Lightning Discharges, Springer, Dordrecht (2006), p. 253–311.

  14. U. Ebert and D. D. Sentman, J. Phys. D: Appl. Phys., 41, No. 23, 230301 (2008).

    Article  ADS  Google Scholar 

  15. G. A. Dawson and W. P. Winn, Z. Phys., 183, 159 (1965). https://doi.org/10.1007/BF01380792

    Article  ADS  Google Scholar 

  16. I. Gallimberti, J. Phys. D: Appl. Phys., 5, 2179–2189 (1972). https://doi.org/10.1088/0022-3727/5/12/307

  17. J. Qin and V. P. Pasko, J. Phys. D: Appl. Phys., 47, 435202 (2014). https://doi.org/10.1088/0022-3727/47/43/435202

  18. S. Chen, R. Zeng, and C. Zhuang, J. Phys. D: Appl. Phys., 46, No. 37, 375203 (2013). https://doi.org/10.1088/0022-3727/46/37/375203

  19. W. J. Yi and P. F. Williams, J. Phys. D: Appl. Phys., 35, No. 3, 205–218 (2002).

    Article  ADS  Google Scholar 

  20. T. M. P. Briels, J. Kos, G. J. J. Winands, et al., J. Phys. D: Appl. Phys., 41, 234004 (2008). https://doi.org/10.1088/0022-3727/41/23/234004

  21. G. V. Naidis, Phys. Rev. E, 79, 057401 (2009). https://doi.org/10.1103/PhysRevE.79.057401

    Article  ADS  Google Scholar 

  22. N. G. Lehtinen and N. Østgaard, J. Geophys. Res., 123, 6935–6953 (2018). https://doi.org/10.1029/2018JD028646

    Article  Google Scholar 

  23. M. B. Zheleznyak, A. K. Mnatsakanyan, and S. V. Sizykh, High Temp. Sci., 20, No. 3, 357–362 (1982).

    ADS  Google Scholar 

  24. M. I. D’yakonov and V. Y. Kachorovskii, Sov. Phys. JETP, 68, No. 5, 1070–1074 (1989).

    ADS  Google Scholar 

  25. S. V. Pancheshnyi, S. M. Starikovskaia, and A. Y. Starikovskii, J. Phys. D: Appl. Phys., 34, No. 1, 105–115 (2001). https://doi.org/10.1088/0022-3727/34/1/317

  26. R. F. Harrington, Field Computation by Moment Methods, IEEE Press, New York (1993).

  27. N. Y. Babaeva and G. V. Naidis, IEEE Trans. Plasma Sci., 25, 375–379 (1997). https://doi.org/10.1109/27.602514

    Article  ADS  Google Scholar 

  28. V. P. Pasko, U. S. Inan, and T. F. Bell, Geophys. Res. Lett., 25, No. 12, 2123–2126 (1998). https://doi.org/10.1029/98GL01242

    Article  ADS  Google Scholar 

  29. A. N. Lagarkov and I. M. Rutkevich, Ionization Waves in Electrical Breakdown of Gases, Springer-Verlag, New York (1994).

  30. L. B. Loeb, Science, 148, No. 3676, 1417–1426, (1965), https://doi.org/10.1126/science.148.3676.1417.

    Article  ADS  Google Scholar 

  31. A. Y. Starikovskiy and N. L. Aleksandrov, Plasma Sources Sci. Technol., 29, 075004 (2020). https://doi.org/10.1088/1361-6595/ab9484

  32. G. Derks, U. Ebert, and B. Meulenbroek, J. Nonlinear Sci., 18, 551–590 (2008). https://doi.org/10.1007/s00332-008-9023-0

    Article  ADS  MathSciNet  Google Scholar 

  33. M. I. D’yakonov and V. Y. Kachorovskii, Sov. Phys. JETP, 67, No. 5, 1049–1054 (1988).

    ADS  Google Scholar 

  34. N. L. Aleksandrov and E. M. Bazelyan, J. Phys. D: Appl. Phys., 29, 740–752 (1996). https://doi.org/10.1088/0022-3727/29/3/035

  35. V. P. Pasko, “Dynamic Coupling of Quasi-Electrostatic Thundercloud Fields to the Mesosphere and Lower Ionosphere: Sprites and Jets,” PhD thesis, Stanford University, Stanford, CA (1996).

  36. I. Gallimberti, J. Phys. Colloques, 40, No. C7, 193–250 (1979). https://doi.org/10.1051/jphyscol:19797440

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. G. Lehtinen.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 64, Nos. 1, pp. 12–28, January 2021. Russian DOI: 10.52452/00213462_2021_64_1_12

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lehtinen, N.G. Physics and Mathematics of Electric Streamers. Radiophys Quantum El 64, 11–25 (2021). https://doi.org/10.1007/s11141-021-10108-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-021-10108-5

Navigation