Skip to main content
Log in

Coexistence of Coherent Pulses Formed by Superradiant and Quasi-Stationary Modes in a Laser with Low-Q Cavity

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We perform numerical simulation and qualitative analysis of the earlier-predicted simultaneous generation of different quasiperiodic pulse trains in a continuously pumped multimode superradiant laser with self-locking of some modes. For typical parameters of a superradiant gain medium with a strong inhomogeneous broadening of the spectral line, the main features of the dynamic spectra of the generated modes and the statistics of the mode-formed pulses have been revealed in a number of typical examples of the combined low-Q Fabry–Perot cavities with distributed feedback of waves. Lasers with both essentially asymmetric and almost symmetric spectra of modes are considered. In the most interesting case of moderate exceeding of the lasing threshold, the spectrum consists of two superradiant and a large number of quasi-stationary modes and corresponds to the comparable (in terms of power) sequences of superradiant pulse trains and soliton-like pulses of locked modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ya. I.Khanin, Principles of Laser Dynamics, Elsevier, Amsterdam (1999).

  2. F.T. Arecchi and R.G.Harrison, eds., Instabilities and Chaos in Quantum Optics, Springer–Verlag, London (2011).

    Google Scholar 

  3. A. E. Siegman, Lasers, Univ. Science Books, Mill Valley (1986).

    Google Scholar 

  4. L. Lugiato, F. Prati, and M. Brambilla, Nonlinear Optical Systems, Cambridge Univ. Press, Cambridge (2015).

    Book  Google Scholar 

  5. C. O. Weiss, in: Instabilities and Chaos in Quantum Optics II, Plenum Press, New York (1988), pp. 41–52. https://doi.org/10.1007/978-1-4899-2548-03

  6. E. Roldán, G. J. de Valcárcel, F. Prati, et al., in: Spatiotemporal Dynamics in Lasers. Instabilities, Polarization Dynamics, and Spatial Structures, Research Signpost, Trivandrum, (2005), pp. 1–80.

  7. H. A. Haus, IEEE J. Sel. Top. Quantum Electron., 6, No. 6, 1173–1185 (2000). https://doi.org/10.1109/2944.902165

    Article  ADS  Google Scholar 

  8. A. K. Komarov, K.P. Komarov, and A.K.Dmitriev, Nonlinear Dynamics of the Formation and Interaction of Ultrashort Pulses in Lasers with Passive Mode Locking [in Russian], Novosibirsk State Univ., Novosibirsk (2017).

    Google Scholar 

  9. A. A. Belyanin, V. V. Kocharovsky, and Vl. V. Kocharovsky, J. Opt. B: Quantum Semicl. Opt. Soc., 9, No. 1, 1–44 (1997). https://doi.org/10.1088/1355-5111/9/1/002

    Article  ADS  Google Scholar 

  10. Vl. V. Kocharovsky, A. A. Belyanin, E.R.Kocharovskaya, and V.V.Kocharovsky, in: Advanced Lasers. Laser Physics and Technology for Applied and Fundamental Science, Springer, Dordrecht (2015), pp. 49–69. https://doi.org/10.1007/978-94-017-9481-74

  11. V. V. Kocharovsky, V. V. Zheleznyakov, E. R. Kocharovskaya, and Vl. V. Kocharovsky, Phys. Usp., 60, No. 4, 345–384 (2017). https://doi.org/10.3367/UFNe.2017.03.038098

    Article  ADS  Google Scholar 

  12. Vl. V. Kocharovsky, A. V. Mishin, A. F. Seleznev, et al., Theor. Math. Psys., 203, No. 1, 483–500 (2020). https://doi.org/10.1134/S0040577920040054

    Article  Google Scholar 

  13. E. R. Kocharovskaya, A. S. Gavrilov, V. V. Kocharovsky, et al., Radiophys. Quantum Electron., 61, No. 11, 806–833 (2019). https://doi.org/10.1007/s11141-019-09939-0

    Article  Google Scholar 

  14. E.R.Kocharovskaya, A. V. Mishin, I. S. Ryabinin, and V.V.Kocharovsky, Semiconductors, 53, No. 10, 1295–1303 (2019). https://doi.org/10.1134/S1063782619100099

    Article  ADS  Google Scholar 

  15. E. R. Kocharovskaya, A. S. Gavrilov, V. V. Kocharovsky, et al., J. Phys. Conf. Ser., 740, 012007 (2016). https://doi.org/10.1088/1742-6596/740/1/012007

    Article  Google Scholar 

  16. A.K.Komarov, A.K.Dmitriev, K.P.Komarov, and F. Sanchez, Opt. Spectrosc., 121, No. 6, 925–929 (2016). https://doi.org/10.1134/S0030400X16120146

    Article  ADS  Google Scholar 

  17. F. B. Braham, G. Semaan, A. Niang, et al., Laser Phys. Lett ., 15, No. 9, 095401 (2018). https://doi.org/10.1088/1612-202X/aaccb2

    Article  ADS  Google Scholar 

  18. A. Komarov, A. Dmitriev, K. Komarov, et al., Phys. Rev. A, 99, No. 5, 053848 (2019). https://doi.org/10.1103/PhysRevA.99.053848

    Article  ADS  Google Scholar 

  19. S.K.Turitsyn, S. Bogdanov, and A. Redyuk, Opt. Lett ., 45, No. 19, 5352–5355 (2020). https://doi.org/10.1364/OL.402286

    Article  ADS  Google Scholar 

  20. T. Ideguchi, S. Holzner, B. Bernhardt, et al., Nature, 502, No. 7471, 355–358 (2013). https://doi.org/10.1038/nature12607

    Article  ADS  Google Scholar 

  21. Y. Qin, B. Cromey, O. Batjargal, and K. Kieu, Opt. Lett ., 46, No. 1, 146–149 (2021). https://doi.org/10.1364/OL.413431

    Article  ADS  Google Scholar 

  22. A. V. Andrianov and E. A. Anashkina, Laser Phys. Lett ., 18, No. 2, 025403 (2021). https://doi.org/10.1088/1612-202X/abd8da

    Article  ADS  Google Scholar 

  23. P. Grelu, ed., Nonlinear Optical Cavity Dynamics: From Microresonators to Fiber Lasers, Wiley–VCH, Weinheim (2016).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. R. Kocharovskaya.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 63, Nos. 11, pp. 985–1007, November 2020. Russian DOI: 10.52452/00213462_2020_63_11_985

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kocharovskaya, E.R., Mishin, A.V., Seleznev, A.F. et al. Coexistence of Coherent Pulses Formed by Superradiant and Quasi-Stationary Modes in a Laser with Low-Q Cavity. Radiophys Quantum El 63, 887–907 (2021). https://doi.org/10.1007/s11141-021-10102-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-021-10102-x

Navigation