Skip to main content
Log in

Experimental Study of the Interaction of a Laser Plasma Flow with a Transverse Magnetic Field

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We present the results of studying experimentally the expansion of laser plasma in a strong external magnetic field (with a magnetic flux density of 13.5 T) at various sizes of the region of plasma formation on the surface of a solid-state target. It is shown that when the size of the plasma formation region is smaller than the classical plasma braking radius, a nearly identical topology of plasma flows is observed, which is characterized by the formation of a thin plasma sheet directed along the external magnetic field. If the width of the plasma formation region is comparable with the classical plasma braking radius, an additional plasma sheet starts to be formed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Bolaños, J. Béard, G. Revet, et al., Matter Rad. Extremes, 4, 044401 (2019). https://doi.org/10.1063/1.5082330

    Article  Google Scholar 

  2. R. Kodama, K.A.Tanaka, Y. Sentoku, et al., Phys. Rev. Lett., 84, No. 4, 674–677 (2000). https://doi.org/10.1103/PhysRevLett.84.674

    Article  ADS  Google Scholar 

  3. S. Rassou, A. Bourdier, and M. Drouin, Phys. Plasmas, 22, No. 7, 073104 (2015). https://doi.org/10.1063/1.4923464

    Article  ADS  Google Scholar 

  4. M. Nakatsutsumi, Y. Sentoku, A. Korzhimanov, et al., Nat. Commun., 9, 280 (2018). https://doi.org/10.1038/s41467-017-02436-w

    Article  ADS  Google Scholar 

  5. J. Yoshii, C. H. Lai, T. Katsouleas, et al., Phys. Rev. Lett., 79, No. 21, 4194–4197 (1997). https://doi.org/10.1103/PhysRevLett.79.4194

    Article  ADS  Google Scholar 

  6. N. Yugami, T. Higashiguchi, H. Gao, et al., Phys. Rev. Lett., 89, No. 6, 065003 (2002). https://doi.org/10.1103/PhysRevLett.89.065003

    Article  ADS  Google Scholar 

  7. D. Dorranian, M. Starodubtsev, H. Kawakami, et al., Phys. Rev. E, 68, No. 2, P. 2, 026409 (2003). https://doi.org/10.1103/PhysRevE.68.026409

  8. D. Dorranian, M. Ghoranneviss, M. Starodubtsev, et al., Laser Part. Beams, 23, No. 4, 583–596 (2005). https://doi.org/10.1017/S0263034605060052

    Article  ADS  Google Scholar 

  9. D. Dorranian, M. Ghoranneviss, M. Starodubtsev, et al., Phys. Lett. A, 331, Nos. 1–2, 77–83 (2004). https://doi.org/10.1016/j.physleta.2004.08.027

    Article  ADS  Google Scholar 

  10. M. I. Bakunov, S. B. Bodrov, A.V. Maslov, and A. M. Sergeev, Phys. Rev. E, 70, No. 1, 016401 (2004). https://doi.org/10.1103/PhysRevE.70.016401

    Article  ADS  Google Scholar 

  11. S. Fujioka, Z. Zhang, K. Ishihara, et al., Sci. Rep., 3, 1170 (2013). https://doi.org/10.1038/srep01170

    Article  Google Scholar 

  12. P. Y. Chang, G. Fiksel, M. Hohenberger, et al., Phys. Rev. Lett., 107, No. 3, 035006. https://doi.org/10.1103/PhysRevLett.107.035006

  13. D. H. Froula, J. S. Ross, B. B. Pollock, et al., Phys. Rev. Lett., 98, No. 13, 135001 (2007). https://doi.org/10.1103/PhysRevLett.98.135001

    Article  ADS  Google Scholar 

  14. L. J. Perkins, B. G. Logan, G.B. Zimmerman, and C. J. Werner, Phys. Plasmas, 20, No. 7, 072708 (2013). https://doi.org/10.1063/1.4816813

    Article  ADS  Google Scholar 

  15. L. J. Perkins, D. D.-M. Ho, B.G. Logan, et al., Phys. Plasmas, 24, No. 6, 062708 (2017). https://doi.org/10.1063/1.4985150

    Article  ADS  Google Scholar 

  16. S. Sakata, S. Lee, H. Morita, et al., Nat. Commun., 9, 3937 (2018). https://doi.org/10.1038/s41467-018-06173-6

    Article  ADS  Google Scholar 

  17. C. Plechaty, R. Presura, A.A. Esaulov, Phys. Rev. Lett., 111, No. 18, 185002 (2013). https://doi.org/10.1103/PhysRevLett.111.185002

    Article  ADS  Google Scholar 

  18. Yu.P. Zakharov, V. M. Antonov, É. L. Boyarintsev, et al., Plasma Phys. Rep., 32, 183–204 (2006). https://doi.org/10.1134/S1063780X06030020

  19. A. S. Bondarenko, D.B. Schaeffer, E.T.Everson, et al., Nat. Phys., 13, 573–577 (2017). https://doi.org/10.1038/nphys4041

    Article  Google Scholar 

  20. B. Albertazzi, A. Ciardi, M. Nakatsutsumi, et al., Science, 346, No. 6207, 325–328 (2014). https://doi.org/10.1126/science.1259694

    Article  ADS  Google Scholar 

  21. G. Revet, S. N. Chen, R. Bonito, et al., Sci. Adv., 3, No. 11, e1700982 (2017). https://doi.org/10.1126/sciadv.1700982

    Article  ADS  Google Scholar 

  22. B. Khiar, G. Revet, A. Ciardi, et al., Phys. Rev. Lett., 123, No. 20, 205001 (2019). https://doi.org/10.1103/PhysRevLett.123.205001

    Article  ADS  Google Scholar 

  23. E.P. Kurbatov, D.V.Bisikalo, M.V. Starodubtsev, et al., Astron. Rep., 62, No. 8, 483–491 (2018). https://doi.org/10.1134/S1063772918080061

    Article  ADS  Google Scholar 

  24. K. Burdonov, G. Revet, R. Bonito, et al., Astron. Astrophys., 642, A38 (2020). https://doi.org/10.1051/0004-6361/202038189

    Article  Google Scholar 

  25. L. Hartmann, Accretion Processes in Star Formation, Cambridge Univ. Press, Cambridge (2008).

    Book  Google Scholar 

  26. M. Camenzind, in: G. Klare, ed., Accretion and Winds, Reviews in Modern Astronomy. Vol. 3, Springer, Berlin–Heidelberg (1990), pp. 234–265. https://doi.org/10.1007/978-3-642-76238-317

  27. A. Koenigl, Astrophys. J. Lett., 370, L39 (1991). https://doi.org/10.1086/185972

    Article  ADS  Google Scholar 

  28. M.M. Romanova, G.V.Ustyugova, A.V.Koldoba, and R.V. E. Lovelace, Astrophys. J. Lett., 578, No. 1, 420–438 (2002). https://doi.org/10.1086/342464

    Article  ADS  Google Scholar 

  29. J. Arons and S. M. Lea, Astrophys. J., 207, 914–936 (1976). https://doi.org/10.1086/154562

    Article  ADS  Google Scholar 

  30. A.K.Kulkarni and M.M.Romanova, Mon. Not. Roy. Astron. Soc., 386, No. 2, 673–687 (2008). https://doi.org/10.1111/j.1365-2966.2008.13094.x

    Article  ADS  Google Scholar 

  31. Yu.P.Raizer, Prikl. Mekh. Tekh. Fiz., No. 6, 19–28 (1963).

  32. D. Winske, J.D.Huba, C. Niemann, and A. Le, Front. Astron. Space Sci., 5, 51 (2019). https://doi.org/10.3389/fspas.2018.00051

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.V. Starodubtsev.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 63, Nos. 11, pp. 973–984, November 2020. Russian DOI: 10.52452/00213462_2020_63_11_973

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soloviev, A.A., Burdonov, K.F., Kotov, A.V. et al. Experimental Study of the Interaction of a Laser Plasma Flow with a Transverse Magnetic Field. Radiophys Quantum El 63, 876–886 (2021). https://doi.org/10.1007/s11141-021-10101-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-021-10101-y

Navigation