Skip to main content
Log in

Evolution of the Electron Velocity Distribution Function under Resonant Interaction with a Model Wave Packet of Auroral Kilometric Radiation

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We analyze the nonlinear resonant interaction of energetic electrons with auroral kilometric radiation (AKR). The evolution of the electron distribution function in the energy range 1–150 keV is considered based on the numerical solution of the particle motion equations in a given field of a quasi-monochromatic AKR wave packet. It is shown that for realistic values of the wave amplitude 0.2–0.4 V/m, as a result of the interaction, the loss cone is filled with particles having the energies W <30 keV and the particles are redistributed over pitch angles, which leads to the formation of a butterfly pitch-angle distribution. An energy redistribution of particles, in which the particles with energies 3–30 keV are effectively accelerated to energies 30–100 keV, is also possible, depending on the wave parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. A. Benedictov, G. G. Getmantsev, Yu. A. Sazonov, and A. F.Tarasov, Cosmic Res., 3, No. 4, 492–495 (1965).

    Google Scholar 

  2. D. A. Gurnett, J. Geophys. Res., 79, 4227–4238 (1974). https://doi.org/10.1029/JA079i028p04227

    Article  Google Scholar 

  3. D. A. Gurnett, J. Geomagn. Geoelectr ., 30, No. 3, 257–272 (1978). https://doi.org/10.5636/jgg.30.257

  4. R. F. Benson and W.Calvert, Geophys. Res. Lett ., 6, No. 6, ,479–482 (1979). https://doi.org/10.1029/GL006i006p00479

  5. W.Calvert, Geophys. Res. Lett ., 8, No. 8, 919–921 (1981). https://doi.org/10.1029/GL008i008p00919

  6. R. Schreiber, J. Geophys. Res. Space Phys., 110, No. A11, A11222 (2005). https://doi.org/10.1029/2004JA010903

    Article  ADS  Google Scholar 

  7. M. M. Mogilevsky, T.B.Romantsova, J. Hanasz, et al., JETP Lett., 86, No. 11, 709–711 (2008). https://doi.org/10.1134/S0021364007230051

    Article  ADS  Google Scholar 

  8. C. S.Wu and L.C. Lee, Astrophys. J ., 230, 621–626 (1979). https://doi.org/10.1086/157120

  9. Ya.N. Istomin, O.A. Pokhotelov, and Yu. G.Khabazin, Geomagn. A´eron., 25, No. 2, 272–277 (1985).

  10. P. L. Pritchett, J. Geophys. Res. Space Phys., 89, No. A10, 8957–8970 (1984). https://doi.org/10.1029/JA089iA10p08957

    Article  ADS  Google Scholar 

  11. P. L. Pritchett, R. J. Strangeway, R.E.Ergun, and C.W.Carlson, J. Geophys. Res. Space Phys., 107, No. A12, 1437 (2002). https://doi.org/10.1029/2002JA009403

    Article  ADS  Google Scholar 

  12. T. M. Burinskaya and J. L.Rauch, Plasma Phys. Rep., 33, No. 1, 28–37 (2007). https://doi.org/10.1134/S1063780X07010047

    Article  ADS  Google Scholar 

  13. T. M. Burinskaya and M.M. Shevelev, Plasma Phys. Rep., 42, No. 10, 929–935 (2016). https://doi.org/10.1134/S1063780X16100020

    Article  ADS  Google Scholar 

  14. D.A.Gurnett, R. R.Anderson, F. L. Scarf, et al., Space Sci. Rev., 23, No. 1, 103–122 (1979). https://doi.org/10.1007/BF00174114

    Article  ADS  Google Scholar 

  15. D.A.Gurnett and R. R.Anderson, in: S. Akasofu and J. Kan, ed., Geophys. Monograph Series, Vol. 25, Physics of Auroral Arc Formation, American Geophysical Union, Washington (1981), p. 341–350. https://doi.org/10.1029/GM025p0341

  16. A. Morioka, H.Oya, and S.Miyatake, J. Geomagnet. Geoelectr ., 33, No. 1, 37–62 (1981). https://doi.org/10.5636/jgg.33.37

  17. J. D. Menietti, A.M. Persoon, J.D. Pickett, and D.A.Gurnett, J. Geophys. Res. Space Phys., 105, No. A8, 18857–18866 (2000). https://doi.org/10.1029/1999JA000389

    Article  ADS  Google Scholar 

  18. V. I.Karpman, Y. N. Istomin, and D. R. Shklyar, Plasma Phys., 16, No. 8, 685–703 (1974). 10.1088/0032-1028/16/8/001

  19. J. M. Albert, Phys. Fluids B, 5, No. 8, 2744–2750 (1993). https://doi.org/10.1063/1.860715

    Article  ADS  Google Scholar 

  20. J. M. Albert, J. Geophys. Res. Space Phys., 105, No. A9, 21191–21209 (2000). https://doi.org/10.1029/2000JA000008

    Article  ADS  Google Scholar 

  21. A.G.Demekhov, V.Yu.Trakhtengerts, M. Rycroft, and D.Nunn, Geomagn. Aeron., 46, No. 6, 711–716 (2006). https://doi.org/10.1134/S0016793206060053

    Article  ADS  Google Scholar 

  22. J.M.Albert and J.Bortnik, Geophys. Res. Lett ., 36, No. 12, L12110 (2009). https://doi.org/10.1029/2009GL038904

  23. Y.Kubota and Y.Omura, J. Geophys. Res. Space Phys., 122, No. 1, 293–309 (2017). https://doi.org/10.1002/2016JA023267

    Article  ADS  Google Scholar 

  24. V. S.Grach and A.G.Demekhov, Radiophys. Quantum Electron., 60, No. 12, 942–959 (2018). https://doi.org/10.1007/s11141-018-9860-0

    Article  ADS  Google Scholar 

  25. K. H. Lee, Y.Omura, and L.C. Lee, Phys. Plasmas, 19, No. 12, 122902 (2012). https://doi.org/10.1063/1.4772059

    Article  ADS  Google Scholar 

  26. V. S.Grach and A.G.Demekhov, Radiophys. Quantum Electron., 63, No. 3, 157–176 (2020). https://doi.org/10.1007/s11141-021-10043-5

    Article  ADS  Google Scholar 

  27. A. Artemyev, A.Neishtadt, D.Vainchtein, et al., Commun. Nonlinear Sci. Numer. Simul ., 65, 111–160 (2018). https://doi.org/10.1016/j.cnsns.2018.05.004

  28. A. V. Artemyev, A. I.Neishtadt, A.A.Vasiliev, and D.Mourenas, Phys. Rev. E, 95, No. 2, 023204 (2017). https://doi.org/10.1103/PhysRevE.95.023204

    Article  ADS  Google Scholar 

  29. V. S.Grach and A.G.Demekhov, J. Geophys. Res. Space Phys., 125, No. 2, e2019JA027358 (2020). 10.1029/2019JA027358

  30. D. R. Shklyar, in: L. M. Zeleny and I. S.Veselovsky (eds.), Plasma Heliogeophysics, Vol. II [in Russian], Fizmatlit, Moscow (2008), pp. 391–490.

  31. J. M. Albert, X.Tao, and J.Bortnik, in: D. Summers, I.R. Mann, D. N. Baker, and M. Schulz (eds.), Geophys. Monograph Series, Vol. 199, Dynamics of the Earth’s Radiation Belts and Inner Magnetosphere, American Geophysical Union, Washington (2013), 255–264. https://doi.org/10.1029/2012gm001324

  32. B.V. Lundin and D. R. Shklyar, Geomagn. A´eron., 17, No. 2, 246–251 (1977).

  33. P. A. Bespalov and V.Yu.Trakhtengerts, Alfv´en Masers [in Russian], Inst. Appl. Phys. Akad. Nauk SSSR (1986).

  34. O.Amm, J. Birn, J.Bonnell, et al., Space Sci. Rev., 103, Nos. 1–4, 93–208 (2002). https://doi.org/10.1023/A:1023082700768

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Grach.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 63, Nos. 11, pp. 919–941, November 2020. Russian DOI: 10.52452/00213462 2020 63 11 919

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grach, V.S., Demekhov, A. Evolution of the Electron Velocity Distribution Function under Resonant Interaction with a Model Wave Packet of Auroral Kilometric Radiation. Radiophys Quantum El 63, 827–847 (2021). https://doi.org/10.1007/s11141-021-10098-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-021-10098-4

Navigation