Skip to main content
Log in

Variational Data Assimilation Methods in Geophysical Hydrodynamics Models and Their Application

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We consider direct and inverse problems of geophysical hydrodynamics, associated with prediction, posterior analysis, and variational assimilation of observational data. The focus is on numerical algorithms for solving problems with incomplete information (initial and boundary conditions). Along with the classical algorithms, an approach to setting and solving these problems developed in the works of G. I.Marchuk and his scientific school is presented. The approach is based on a combination of splitting methods and adjoint equations. This leads to the construction of flexible, hierarchically developed models of complex systems with a modular structure and efficient implementation. The main part of this approach is splitting a complex nonlinear system of equations for physical processes into a number of energetically balanced subsystems. Each individual subsystem can reuse splitting into subsystems of a simpler structure. The methodology is illustrated by solving the problems in hydrodynamics of the World Ocean and the Black Sea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V.P. Dymnikov and V.B. Zalesniy, Fundamentals of Computational Geophysical Hydrodynamics [in Russian], GEOS, Moscow (2019).

    Google Scholar 

  2. J. L. Lions, Controle Optimal des Systemes Gouvernes par des Equations aux Derivees Partielles, Dunod, Paris (1968).

    MATH  Google Scholar 

  3. G. I. Marchuk, Adjoint Equations and Analysis of Complex Systems, Springer, Dordreht (1995).

    Book  Google Scholar 

  4. P. E. Gill, W.Murray, and M.H.Wright, Practical Optimization, Academic Press, London (1997).

    MATH  Google Scholar 

  5. V. I. Agoshkov, Optimal Control and Adjoint Equations Methods in Problems of Mathematical Physics [in Russian], Inst. Comp. Mathem. Rus. Acad. Sci., Moscow (2003).

    MATH  Google Scholar 

  6. A. F. Bennett, Inverse Modeling of the Ocean and Atmosphere, Cambridge University Press, Cambridge (2002).

    Book  Google Scholar 

  7. R. Daley, Atmospheric Data Analysis, Cambridge University Press, Cambridge (1991).

    Google Scholar 

  8. M.Ghil and P.Malanotte-Rizzoli, Adv. Geophys., 33, 141–266 (1991). https://doi.org/https://doi.org/10.1016/S0065-2687(08)60442-2

  9. E.Kalnay, Atmospheric Modeling. Data Assimilation and Predictibility, Cambridge University Press, Cambridge (2003).

  10. H.Panofsky, J. Appl. Meteor., 6, No. 6, 386–392 (1949). https://doi.org/https://doi.org/10.1175/1520-0469(1949)006<0386:OWMA>2.0CO;2

  11. B. Gilchrist and G.Cressman, Tellus, 6, No. 4, 309–318 (1954). https://doi.org/https://doi.org/10.1111/j.2153-3490.1954.tb01126.x

  12. P. Bergthorsson and B. Doos, Tellus, 7, No. 3, 329–340 (1955). https://doi.org/https://doi.org/10.3402/tellusa.v7i3.8902

  13. G.Cressman, Mon. Weath. Rev., 87, No. 10, 367–374 (1959). https://doi.org/10.1175/1520-0493(1959)087<0367:AOOAS>2.0.CO;2

    Article  ADS  Google Scholar 

  14. L. S.Gandin, Objective Analysis of Hydrometeorological Fields [in Russian], Gidrometizdat, Leningrad (1963).

    Google Scholar 

  15. A.C. Lorenc, Mon. Weath. Rev., 109, No. 4, 701–721 (1981). https://doi.org/https://doi.org/10.1175/1520-0493(1981)109<0701:AGTDMS>2.0.CO;2

  16. A.C. Lorenc, Quart. J. R. Meteorol. Soc., 112, No. 474, 1177–1194 (1986). https://doi.org/https://doi.org/10.1002/qj.49711247414

  17. H. Douville, P. Viterbo, J.-F. Mahfouf, and A. Beljaars, Mon. Weath. Rev., 128, No. 6, 1733–1756 (2000). https://doi.org/https://doi.org/10.1175/1520-0493(2000)128<1733:EOTOIA>2.0.CO;2

  18. J.A. Cummings, Quart. J. R. Meteorol. Soc., 131, No. 613, 3583–3604 (2005). https://doi.org/https://doi.org/10.1256/qj.05.105

  19. G. Evensen, Ocean Dynamics, 53, No. 4, 343–367 (2003). https://doi.org/https://doi.org/10.1007/s10236-003-0036-9

  20. P. Sakov and P.A. Sandery, Ocean Modelling, 89, 45–60 (2015). https://doi.org/https://doi.org/10.1016/j.ocemod.2015.02.003

  21. M. N.Kaurkin, R. A. Ibraev, and K. P. Belyaev, Oceanology, 56, No. 6, 774–781 (2016). https://doi.org/https://doi.org/10.1134/S0001437016060059

  22. R.E.Kalman and R. S.Bucy, J. Basic. Eng., 83, No. 1, 95–108 (1961). https://doi.org/https://doi.org/10.1016/j.ocemod.2015.02.003

  23. A. H. Jazwinski, Stochastic Processes and Filtering Theory, Academic Press, London (1970).

    MATH  Google Scholar 

  24. M.Ghil, S. E.Cohn, and A.Dalcher, in: D. Williamson, ed., The Interaction Between Objective Analysis and Initialization. Publ. Meteorol. 127 (Proc. 14th Stanstead Seminar), McGill University, Montreal (1982), pp. 83–87.

    Google Scholar 

  25. G. Evensen, Data Assimilation: The Ensemble Kalman Filter, Springer, Berlin (2009).

    Book  Google Scholar 

  26. A. S. Sarkisyan, S.G.Demyshev, G. K. Korotaev, and V.A.Moiseenko, Results of Science and Technology. Atmosphere, Ocean, and Space—the “Cuts” program [in Russian], 6, VINITI, Moscow (1986), p. 88–89.

  27. V. V.Knysh, G.K.Korotaev, A. I.Mizyuk, and A. S. Sarkisyan, Izv. Atmos. Oceanic Phys., 48, No. 1, 57–73 (2012). https://doi.org/https://doi.org/10.1134/S0001433812010057

  28. Y. Sasaki, Mon. Weath. Rev., 98, 875–883 (1970). https://doi.org/https://doi.org/10.1175/1520-0493(1970)098<0875:SBFINV>2.3.CO;2

  29. C.Provost and R. Salmon, J. Mar. Res., 44, No. 1, 1–34 (1986). https://doi.org/https://doi.org/10.1357/002224086788460175

  30. D. F. Parrish and J.C. Derber, Mon. Weath. Rev., 120, No. 8, 1747–1763 (1992). https://doi.org/https://doi.org/10.1175/1520-0493(1992)120<1747:TNMCSS>2.0.CO;2

  31. P. Courtier, E.Andersson, W.Heckley, et al., Quart. J. R. Meteorol. Soc., 124, No. 550, 1783–1807 (1998). https://doi.org/https://doi.org/10.1002/qj.49712455002

  32. P.Courtier, J.N.Thepaut, and A. Hollingsworth, Quart. J. R. Meteorol. Soc., 120, No. 519, 1389–1408 (1994). https://doi.org/https://doi.org/10.1002/qj.49712051912

  33. V. V. Penenko and N. V.Obraztsov, Meteorologiya i Gidrologiya, 11, No. 1, 1–11 (1976).

    Google Scholar 

  34. G. I.Marchuk and V.V. Penenko, in: G. I.Marchuk, ed., Modelling and Optimization of Complex Systems: Proc. Of the IFIP-TC7 Working conf ., Springer, New York (1979).

  35. F.-X. Le Dimet and O. Talagrand, Tellus, 38A, No. 2, 97–110 (1986). https://doi.org/https://doi.org/10.3402/tellusa.v38i2.11706

  36. J.M. Lewis and J. C. Derber, Tellus, 37A, No. 4, 309–322 (1985). https://doi.org/https://doi.org/10.1111/j.1600-0870.1985.tb00430.x

  37. I. M. Navon, in: Y.K. Sasaki, ed., Variational Methods in Geosciences, 5, Elsevier, New York (1986). https://doi.org/https://doi.org/10.1016/B978-0-444-42697-0.50009-6

  38. V. I. Agoshkov and G. I.Marchuk, Russ. J. Numer. Anal. Math. Modelling, 8, No. 1, 1–16 (1993). https://doi.org/https://doi.org/10.1515/rnam.1993.8.1.1

  39. G. I. Marchuk and V. B. Zalesny, Russ. J. Numer. Anal. Math. Modelling, 8, No. 4, 311–326 (1993). https://doi.org/https://doi.org/10.1515/rnam.1993.8.4.311

  40. G. I.Marchuk and V.P. Shutyaev, Russ. J. Numer. Anal. Math. Modelling, 9, No. 3, 265–279 (1994). https://doi.org/https://doi.org/10.1515/rnam.1994.9.3.265

  41. V. I. Agoshkov, E. I. Parmuzin, V. B. Zalesny, et al., Russ. J. Numer. Anal. Math. Modelling, 30, No. 4, 203–212 (2015). https://doi.org/https://doi.org/10.1515/rnam-2015-0018

  42. V. I. Agoshkov, M. Assovskii, V. B. Zalesny, et al., Russ. J. Numer. Anal. Math. Modelling, 30, No. 3, 129–142 (2015). https://doi.org/https://doi.org/10.1515/rnam-2015-0013

  43. V.P. Shutyaev, Control Operators and Iterative Algorithms in Variational Data Assimilation Problems [in Russian], Nauka, Moscow (2001).

    MATH  Google Scholar 

  44. V. I. Agoshkov, E. I. Parmuzin, and V. P. Shutyaev, Comput. Math. Math. Phys., 48, No. 8, 1293–1312 (2008). https://doi.org/https://doi.org/10.1134/S0965542508080046

  45. K. Ide, P.Courtier, M.Ghil, and A.C. Lorenc, J. Met. Soc. Japan, 75, No. 1B, 181–189 (1997). https://doi.org/https://doi.org/10.2151/jmsj1965.75.1B181

  46. K. Mogensen, M.A.Balmaseda, A.T.Weaver, et al., NEMOVAR: a variational data assimilation system for the NEMO ocean model, ECMWF Technical Memorandum, No. 120 (2009).

  47. Yu.G. Evtushenko, E. S. Zasukhina, and V. I. Zubov, Comput. Math. Math. Phys., 37, No. 12, 1406–1414 (1997).

    MathSciNet  Google Scholar 

  48. V. I. Agoshkov and V.M. Ipatova, Diff. Equat., 43, No. 8, 1088–1100 (2007). https://doi.org/https://doi.org/10.1134/S0012266107080071

  49. V. I. Agoshkov and V.M. Ipatova, Dokl. Math., 75, No. 1, 28–30 (2007). https://doi.org/https://doi.org/10.1134/S1064562407010097

  50. Z. Sirkes and E. Tziperman, Mon. Weather Rev., 125, No. 12, 3373–3378 (1997). https://doi.org/https://doi.org/10.1175/1520-0493(1997)125<3373:FDOAOA>2.0.CO;2

  51. E. I. Parmuzin, V.P. Shutyaev, and N.A.Diansky, Russ. J. Numer. Anal. Math. Modelling, 22, No. 2, 177–198 (2007). https://doi.org/https://doi.org/10.1515/RJNAMM.2007.009

  52. A. S. Lawless, N.K. Nichols, and S.P. Balloid, Quart. J. Roy. Meteorol. Soc., 129, No. 589, 1237–1254 (2003). https://doi.org/https://doi.org/10.1256/qj.02.75

  53. A. Lorenc, Quart. J. Roy. Meteorol. Soc., 129, No. 595, 3183–3203 (2003). https://doi.org/https://doi.org/10.1256/qj.02.132

  54. D. Fairbairn, S. R. Pring, A.C. Lorenc, et al., Quart. J. Roy. Meteor. Soc., 140, No. 678, 281–294 (2014). https://doi.org/https://doi.org/10.1002/qj.2135

  55. A.M. Clayton, A. C. Lorenc, and D.M.Barker, Quart. J. Roy. Meteor. Soc., 139, No. 675, 1445–1461 (2013). https://doi.org/https://doi.org/10.1002/qj.2054

  56. M. Bonavita, E. Holm, L. Isaksen, et al., Quart. J. Roy. Meteor. Soc., 142, No. 691, 287–303 (2016). https://doi.org/https://doi.org/10.1002/qj.2652

  57. C. Liu, Q. Xiao, and B. Wang, Mon. Weath. Rev., 136, No. 9, 3363–3373 (2008). https://doi.org/https://doi.org/10.1175/2008MWR2312.1

  58. G. Desroziers, J.-T.Camino, and L. Berre, Quart. J. Roy. Meteorol. Soc., 140, No. 684, 2097–2110 (2014). https://doi.org/https://doi.org/10.1002/qj.2325

  59. N. B. Zakharova, IOP Conf. Ser.: Earth Environ. Sci ., 459, No. 4, 042007 (2020). https://doi.org/https://doi.org/10.1088/1755-1315/459/4/042007

  60. V. B. Zalesny, N. B. Zakharova, and A.V.Gusev, Russ. J. Numer. Anal. Math., 26, No. 2, 209–229 (2011). https://doi.org/https://doi.org/10.1515/RJNAMM.2011.012

  61. G. I. Marchuk and V. B. Zalesny, Izv. Atmos. Oceanic Phys., 48, No. 1, 15–29 (2012). https://doi.org/https://doi.org/10.1134/S0001433812010070

  62. V. B. Zalesny, A. V. Gusev and S. N. Moshonkin, Izv. Atmos. Oceanic Phys., 49, No. 6, 642–658 (2013). https://doi.org/https://doi.org/10.1134/S0001433813060133

  63. http://data-portal.ecmwf.int/data/d/interim_daily/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. I. Parmuzin.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 63, Nos. 9–10, pp. 749–770, September–October 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parmuzin, E.I., Zalesny, V.B., Agoshkov, V.I. et al. Variational Data Assimilation Methods in Geophysical Hydrodynamics Models and Their Application. Radiophys Quantum El 63, 673–693 (2021). https://doi.org/10.1007/s11141-021-10089-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-021-10089-5

Navigation