Skip to main content
Log in

Speckle Dynamics in the Image Plane of a Monolayer of Cultured Cells

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We study the L-41 KD/84, and RD cells cultured as a monolayer on a glass substrate. This work is aimed at studying the laws of variation in the speckle-dynamics signals in space and time in the image plane of a monolayer of cells for high optical magnifications, different rates of the environmental-temperature variations, exposure to other virus types, and after the cell defrosting. It is shown that at a temperature-variation rate of 0.01°C/min, a good correlation is observed between the arrays of the standard deviation σu of the optical-path difference of the wave pairs transmitting through the object and the temperature (the correlation coefficient is 0.88). It is noted that the major part of the cultured cells is the most active in the temperature range 32–34°C, which allows us to propose this particular range for studying the processes in living cells. The value of σu, which four times exceeds the corresponding value for the cells infected by the herpes virus, is obtained for the first time on the monolayer of the cultured RD cells infected by the ECHO11 virus, which agrees with the virology data for the above-mentioned viruses. Assuming that the processes occurring in the nutrient solution and inside the cells, the cell contacts, and the chaotic movement of the cells independently change the phases of the sounding waves, an excellent coincidence (the correlation coefficient is 0.99) of the experimental and theoretical time autocorrelation functions of the radiation intensity was obtained during the experiments with defrosted cells. It is concluded that the used method is promising for studying the normally functioning cells and the cells exposed to infections, toxic substances, and medicines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Anisimov, S.M.Kozel, and G. R. Lokshin, Opt. Spektrosk., 27, No. 3, 483–491 (1969).

    Google Scholar 

  2. T.Yoshimura, J. Opt. Soc. Am. A, 3, No. 7, 1032–1054 (1986). https://doi.org/10.1364/JOSAA.3.001032

    Article  ADS  Google Scholar 

  3. I.Yamaguchi, Opt. Acta: Int. J. Opt., 28, No. 10, 1359–1376 (1981). https://doi.org/10.1080/713820454

    Article  ADS  Google Scholar 

  4. N. A. Fomin, Speckle Photography for Fluid Mechanics Measurements, Springer-Verlag, Berlin (1998).

    Book  Google Scholar 

  5. O.P. Maksymenko, L. I.Muravsky, and M. I. Berezyuk, J. Biomed. Opt., 20, No. 9, 095006 (2015). https://doi.org/https://doi.org/10.1117/1.JBO.20.9.095006

  6. F. M. Vincitorio, C.Mulone, P.A.Marcuzzi, et al., in: Proc. SPIE, 9660, 96601Q (2015). https://doi.org/https://doi.org/10.1117/12.2196257

  7. A. Zdunek, L. I.Muravsky, L.Frankevych, and K.Konstankiewicz, Int. Agrophys., 21, No. 3, 305–310 (2007).

    Google Scholar 

  8. P. H.Carvalho, J.B.Barreto, R.A.Braga, Jr., and G. F.Rabelo, Biosyst. Eng., 102, No. 1, 31–35 (2009). https://doi.org/10.1016/j.biosystemseng.2008.09.025

    Article  Google Scholar 

  9. H. J.Rabal and R. A. Braga, eds., Dynamic Laser Speckle and Applications, CRC Press, Boca Raton (2008).

    Google Scholar 

  10. A.Oulamara, G.Tribillon, and J.Duvernoy, J. Modern Opt., 36, No. 2, 165–179 (1989). https://doi.org/https://doi.org/10.1080/09500348914550221

  11. J. D. Briers, Opt. Applicata, 37, No. 1–2, 139–152 (2007).

    Google Scholar 

  12. P. Zakharov, A. C. Völker, M. Wyss, et al., Opt. Express, 17, No. 16, 13904–13917 (2009). https://doi.org/https://doi.org/10.1364/OE.17.013904

  13. M. Z.Ansari, A.Humeau-Heurtier, N.Offenhauser, et al., Microvasc. Res., 107, 106–109 (2016). https://doi.org/https://doi.org/10.1016/j.mvr.2016.06.003

  14. I. V.Mukhina, in: The XXXth Int. School-Symp. on Holography, Coherent Optics, and Photonics. September 30–October 4, 2019, Ekaterinburg, pp. 22–23.

  15. R.Cao, W. Xiao, X.Wu, et al., Biomed. Opt. Express, 9, No. 1, 72–85 (2018). https://doi.org/https://doi.org/10.1364/BOE.9.000072

  16. A. V. Belashov, A. A. Zhikhoreva, T.N. Belyaeva, et al., J. Opt. Soc. Am. A, 37, No. 2, 346–352 (2020). https://doi.org/https://doi.org/10.1364/JOSAA.382135

  17. W.Choi, C. Fang-Yen, K. Badizadegan, et al., Nat. Meth., 4, No. 9, 717–719 (2007). https://doi.org/https://doi.org/10.1038/nmeth1078

  18. R.Fu, Y. Su, R.Wang, X. Lin, et al., Biomed. Opt. Express, 10, No. 6, 2757–2767 (2019). https://doi.org/https://doi.org/10.1364/BOE.10.002757

  19. A.P. Vladimirov, Radiophys. Quantum Electron., 57, Nos. 8–9, 584–588 (2015). https://doi.org/https://doi.org/10.1007/s11141-015-9542-0

  20. A. S. Malygin, “Estimation of metabolism of intact and virus-contaminated cells using the method of dynamic speckle interferometry” [in Russian], Ph. D. Thesis, Tomsk (2015).

  21. A. S. Malygin, N. V. Bebenina, A.P. Vladimirov, et al., Instrum. Exp. Tech., 55, No. 3, 415–418 (2012). https://doi.org/https://doi.org/10.1134/S0020441212020091

  22. A.P. Vladimirov, A. V. Druzhinin, A. S. Malygin, and K.N.Mikitas, in: Proc. SPIE, 8337, 8337OC (2012). https://doi.org/https://doi.org/10.1117/12.924800

  23. A.P. Vladimirov, Opt. Eng., 55, No. 12, 121727 (2016). https://doi.org/https://doi.org/10.1117/1.OE.55.12.121727

  24. A.P. Vladimirov, in: AIP Conf. Proc., 1740, 040004 (2016). https://doi.org/https://doi.org/10.1063/1.4952663

  25. Yu.A.Mikhailova, A.P. Vladimirov, A. A. Bakharev, et al., Ros. Zh. Biomekh., 21, No. 1, 64–73 (2017). doi.https://doi.org/10.15593/RZhBiomeh/2017.1.06

    Article  Google Scholar 

  26. A.P. Vladimirov, Y. A. Mikhailova, and N. A. Drukarenko, in: Proc. SPIE, 10, 1083427 (2018). https://doi.org/https://doi.org/10.1117/12.2319729

  27. A.P. Vladimirov, A. S. Malygin, Y. A. Mikhailova, et al., Biomed. Eng., 48, No. 4, 178–181 (2014). https://doi.org/https://doi.org/10.1007/s10527-014-9447-9

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. A. Mikhailenko.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 63, Nos. 8, pp. 680–693, August 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikhailenko, Y.A., Vladimirov, A.P. & Bakharev, A.A. Speckle Dynamics in the Image Plane of a Monolayer of Cultured Cells. Radiophys Quantum El 63, 612–624 (2021). https://doi.org/10.1007/s11141-021-10084-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-021-10084-w

Navigation