Skip to main content
Log in

Application of Millimeter-Wave Radiation for Manufacture of Ceramic Items Using Additive Methods

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We demonstrate the possibility to use focused beams of millimeter-wave radiation to heat ceramic materials locally with the purpose of manufacturing sintered products on the basis of such materials by additive methods. The results of experiments on layer-by-layer sintering of ceramic hydroxiapatite samples heated by a gyrotron facility operating at a frequency of 24 GHz are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. E. Clark and W.H. Sutton, Ann. Rev. Mater. Sci., 26, 299–331 (1996). https://doi.org/https://doi.org/10.1146/annurev.ms.26.080196.001503

  2. M. Oghbaei and O. Mirzaee, J. Alloys Compounds, 494, Nos. 1–2, 175–189 (2010). https://doi.org/https://doi.org/10.1016/j.jallcom.2010.01.068

  3. A. Zocca, P. Colombo, C.M.Gomes, and J.Günster, J. Am. Ceram. Soc., 98, No. 7, 1983–2001 (2015). https://doi.org/https://doi.org/10.1111/jace.13700

  4. W. Gao, Y. Zhang, D. Ramanujan, et al., Comp. Aided Des., 69, 65–89 (2015). https://doi.org/https://doi.org/10.1016/j.cad.2015.04.001

  5. H. Curto, A. Thuault, F. Jean, et al., J. Eur. Ceram. Soc., 40, No. 7, 2548–2554 (2020). https://doi.org/https://doi.org/10.1016/jeurceramsoc.2019.11.009

  6. Yu.V.Bykov, K. I. Rybakov, and V. E. Semenov, Nanotechnol. Russia, 6, Nos. 9–10, 647 (2011). https://doi.org/https://doi.org/10.1134/S1995078011050053

  7. Yu.V.Bykov, K. I. Rybakov, and V. E. Semenov, J. Phys. D: Appl. Phys., 34, No. 13, R55–R75 (2001). https://doi.org/https://doi.org/10.1088/0022-3727/34/13/201

  8. M.Yu.Glyavin, M.V.Morozkin, A. I. Tsvetkov, et al., Radiophys. Quantum Electron., 58, No. 9, 639–648 (2016). https://doi.org/https://doi.org/10.1007/s11141-016-9636-3

  9. M. Thumm, J. Infrared Millim. Terahertz Waves, 41, 1–140 (2020). https://doi.org/https://doi.org/10.1007/s10762-019-00631-y

  10. Yu.V. Bykov, A.G.Eremeev, M. Yu. Glyavin, et al., Radiophys. Quantum Electron., 61, No. 10, 752–762 (2019). https://doi.org/https://doi.org/10.1007/s11141-019-09933-6

  11. S. V. Egorov, A.G. Eremeev, V.V.Kholoptsev, et al., IOP Conf. Ser. Mater. Sci. Engin., 678, 012022 (2019). https://doi.org/https://doi.org/10.1088/1757-899X/678/1/012022

  12. M. Cologna, B. Rashkova, and R. Raj, J. Am. Ceram. Soc., 93, No. 11, 3556–3559 (2010). https://doi.org/https://doi.org/10.1111/j.1551-2916.2010.04089.x

  13. Yu.V.Bykov, S.V. Egorov, A.G.Eremeev, et al., J. Am. Ceram. Soc., 98, No. 11, 3518–3524 (2015). https://doi.org/https://doi.org/10.1111/jace.13809

  14. Yu.V.Bykov, S.V. Egorov, A.G.Eremeev, et al., Materials, 9, No. 8, 684 (2016). https://doi.org/https://doi.org/10.3390/ma9080684

  15. Yu.V.Bykov, S.V. Egorov, A.G. Eremeev, et al., Tech. Phys., 63, No. 3, 391–397 (2018) https://doi.org/https://doi.org/10.1134/S1063784218030052

  16. S. V. Egorov, A.G.Eremeev, V.V.Kholoptsev, et al., Scr. Mater., 174, 68–71 (2020). https://doi.org/https://doi.org/10.1016/j.scriptamat.2019.08.032

  17. G. V. Kuznetsov and M. A. Sheremet, Finite Difference Methods of Solving the Heat Conduction Problems [in Russian], Tomsk Politech. Univ., Tomsk (2007).

    Google Scholar 

  18. S. Sumin Sih, J.W.Barlow, “Measurement and prediction of the thermal conductivity of powders at high temperatures,” in: Proc. 1994 Solid Freeform Fabrication Symp., 8–10 August 1994, Austin, TX, USA, pp. 321–329. https://doi.org/10.15781/T2KH0FJ02

  19. K. I. Rybakov, S.V. Egorov, A.G. Eremeev, et al., J. Mater. Res., 34, No. 15, 2620–2634 (2019). https://doi.org/https://doi.org/10.1557/jmr.2019.232

  20. A. Eremeev, S.Egorov, and V.Kholoptsev, in: Proc. 17th Int. Conf. on Microwave High Frequency Heating (AMPERE 2019), 9–12 September 2019, Valencia, Spain, pp. 310–317. https://doi.org/https://doi.org/10.4995/Ampere2019.2019.9754

  21. Y.Wu, J.Du, K.-L.Choy, and L. L.Hench, J. Eur. Ceram. Soc., 27, No. 16, 4727–4735 (2007). https://doi.org/https://doi.org/10.1016/j.jeurceramsoc.2007.02.219

  22. L. Esposito, A. Piancastelli, Yu.Bykov, et al., Opt. Mater., 35, No.,4, 761–765 (2013). https://doi.org/https://doi.org/10.1016/j.optmat.2012.07.014

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. I. Rybakov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 63, Nos. 7, pp. 580–588, March 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Egorov, S.V., Eremeev, A.G., Plotnikov, I.V. et al. Application of Millimeter-Wave Radiation for Manufacture of Ceramic Items Using Additive Methods. Radiophys Quantum El 63, 522–529 (2020). https://doi.org/10.1007/s11141-021-10076-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-021-10076-w

Navigation