Skip to main content

Superconducting Receivers for Space, Balloon, and Ground-Based Sub-Terahertz Radio Telescopes

We give a review of both our own original scientific results of the development of superconducting receivers for sub-terahertz astronomy and the main leading concepts of the global instrumentation. The analysis of current astronomical problems, the results of microwave astroclimate research, and the development of equipment for sub-terahertz radio astronomy studies justify the need and feasibility of a major infrastructure project in Russia to create a sub-terahertz telescope, as well as to enhance the implementation of the ongoing Millimetron and Suffa projects. The following results are discussed: i) superconducting coherent receivers and broadband subterahertz detectors for space, balloon, and ground-based radio telescopes have been developed and tested; ii) ultrasensitive receiving systems based on tunnel structures such as superconductor—insulator—superconductor (SIS) and superconductor—insulator—normal metal—insulator—superconductor (SINIS) have been created, fabricated, and examined; iii) a receiving array based on SINIS detectors and microwave readout system for such structures has been implemented; iv) methods for manufacturing high-quality tunnel structures Nb/AlOx/Nb and Nb/AlN/NbN based on niobium films with a current density of up to 30 kA/cm2 have been developed. Receivers operated at 200 to 950 GHz and having a noise temperature only a factor of 2 to 5 higher than the quantum limit have been created and tested.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    The Event Horizon Telescope Collaboration, Astrophys. J. Lett., 875, No. 1, L1 (2019). https://doi.org/10.3847/2041-8213/ab0ec7

    ADS  Article  Google Scholar 

  2. 2.

    The Event Horizon Telescope Collaboration, Astrophys. J. Lett., 875, No. 1, L2 (2019). https://doi.org/10.3847/2041-8213/ab0c96

    ADS  Article  Google Scholar 

  3. 3.

    A.G.Kislyakov, Sov. Phys. Usp., 13, 495–521 (1971). https://doi.org/https://doi.org/10.1070/PU1971v013n04ABEH004683

  4. 4.

    A.G.Kislyakov, Radiophys. Quantum Electron., 4, No. 3, 433–443 (1961).

    Google Scholar 

  5. 5.

    A. G.Kislyakov, A. D.Kuzmin, and A. E. Salomonovich, Izv. Vyssh. Uchebn. Zaved. Radiofiz., 4, No. 3, 573–574 (1961).

    Google Scholar 

  6. 6.

    A. G.Kislyakov, and A. I.Naumov, Sov. Astron., A.J., 11, 1059–1060 (1968).

    ADS  Google Scholar 

  7. 7.

    A.G.Kislyakov, Izv. Vyssh. Uchebn. Zaved. Radiofiz., 1, No. 4, 81–89 (1958).

    Google Scholar 

  8. 8.

    Y. A. Dryagin, and L. I. Fedoseev, Radiophys. Quantum Electron., 12, No. 6, 647–691 (1969). https://doi.org/https://doi.org/10.1007/BF01031242

  9. 9.

    V. A. Efanov, A.G.Kislyakov, I.G.Moiseev, and A. I. Naumov, Astron. Zh., 46, No. 1, 147–151 (1969).

    ADS  Google Scholar 

  10. 10.

    A. G. Kislyakov, V. I. Chernyshov, Y.V. Lebsky, et al., Astron. Zh., 48, No. 1, 39–45 (1971).

    ADS  Google Scholar 

  11. 11.

    A. M. Belyantsev, and V.N.Genkin, Radiophys. Quantum Electron., 12, No. 5, 609–611 (1969). https://doi.org/https://doi.org/10.1007/BF01033144

  12. 12.

    A. G.Kislyakov, Y. V. Lebsky, and A. I. Naumov, Radiophys. Quantum Electron., 11, No. 12, 1001–1006 (1968). https://doi.org/https://doi.org/10.1007/BF01032962

  13. 13.

    http://lmtgtm.org

  14. 14.

    https://pole.uchicago.edu

  15. 15.

    http://olimpo.roma1.infn.it

  16. 16.

    https://www.cosmos.esa.int/web/planck

  17. 17.

    http://millimetron.ru/index.php/en/

  18. 18.

    A. G.Kislyakov, V. A. Razin, and N.M.Tseitlin, Introduction to Radio Astronomy, Part 2, Radio Astronomy Technique (textbook for universities) [in Russian], N. I. Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod (1996), p. 23.

    Google Scholar 

  19. 19.

    I. I. Zinchenko, A.M.Baryshev, and V. F.Vdovin, Astron. Lett., 23, No. 2, 123–126 (1997).

    ADS  Google Scholar 

  20. 20.

    V. F. Vdovin, A. I.Eliseev, I. I. Zinchenko, et al., J. Commun. Technol. Electron., 50, No. 9, 1118–1122 (2005).

    Google Scholar 

  21. 21.

    V. Vdovin, O.Bolshakov, J.Kalunki, et al., in: The X Finnish-Russian Radio Astronomy Symposium, 1–5 September, 2008, Orilampi, Finland,http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.557.7590&rep=rep1&type=pdf

  22. 22.

    J. R.Tucker, and M. J.Feldman, Rev. Mod. Phys., 57, No. 4, 1055–1113 (1985). https://doi.org/https://doi.org/10.1103/RevModPhys.57.1055

  23. 23.

    A.R.Kerr, IEEE Trans. Microw. Theory Tech., 47, No. 3, 325–329 (1999). https://doi.org/https://doi.org/10.1109/22.750234

  24. 24.

    J. W.Kooi, M.Chan, T. G. Phillips, et al., IEEE Trans. Microw. Theory Tech., 40, No. 5, 812–815 (1992). https://doi.org/https://doi.org/10.1109/22.137383

  25. 25.

    A. Karpov, J.Blondell, M.Voss, and K.H.Gundlach, IEEE Trans. Appl. Supercond., 5, No. 2, 3304–3307 (1995). https://doi.org/https://doi.org/10.1109/77.403298

  26. 26.

    B.D. Jackson, G. de Lange, T. Zijlstra, et al., IEEE Trans. Microw. Theory Tech., 54, No. 2, 547–558 (2006). https://doi.org/https://doi.org/10.1109/TMTT.2005.862717

  27. 27.

    A.Karpov, D.Miller, F. Rice, et al., IEEE Trans. Appl. Supercond., 17, No. 2, 343–346 (2007). https://doi.org/https://doi.org/10.1109/TASC.2007.898277

  28. 28.

    A. R. Kerr, S-K.Pan, S.M.X. Claude, et al., IEEE Trans. Terahertz Sci. Technol., 4, No. 2, 201–212 (2014). https://doi.org/https://doi.org/10.1109/TTHZ.2014.2302537

  29. 29.

    A. M. Baryshev, R.Hesper, F. P. Mena, et al., Astron. Astrophys., 577, A129 (2015). https://doi.org/https://doi.org/10.1051/0004-6361/201425529

  30. 30.

    Y. Uzawa, Y. Fujii, A. Gonzalez, et al., IEEE Trans. Appl. Supercond., 25, No. 3, 2401005 (2014). https://doi.org/https://doi.org/10.1109/TASC.2014.2386211

  31. 31.

    A. Khudchenko, A.M.Baryshev, K.Rudakov, et al., IEEE Trans. Terahertz Sci. Technol., 6, No. 1, 127–132 (2016). https://doi.org/https://doi.org/10.1109/TTHZ.2015.2504783

  32. 32.

    Th. de Graauw, F. P. Helmich, T. G. Phillips, et al., Astron. Astrophys., 518, L6 (2010). https://doi.org/https://doi.org/10.1051/0004-6361/201014698

  33. 33.

    A. Karpov, J.A.K.Blondel, K. H. Gundlach, and D.Billion-Pierron, J. Infrared Millim. Terahertz Waves, 18, 301–317 (1997). https://doi.org/https://doi.org/10.1007/BF02677922

  34. 34.

    https://www.almaobservatory.org/en/audience/science/

  35. 35.

    https://www.almaobservatory.org/en/about-alma-at-first-glance/how-alma-works/technologies/receivers/

  36. 36.

    A. V. Smirnov, A. M. Baryshev, P. de Bernardis, et al., Radiophys. Quantum Electron., 54, Nos. 8–9, 557–568 (2011). https://doi.org/https://doi.org/10.1007/s11141-012-9314-z

  37. 37.

    C.E. Groppi and J.H.Kawamura, IEEE Trans. Terahertz Sci. Technol., 1, No. 1, 85–96 (2011). https://doi.org/https://doi.org/10.1109/TTHZ.2011.2159555

  38. 38.

    P. F. Goldsmith, URSI Radio Sci. Bull., 2017, No. 362, 53–73 (2017). https://doi.org/10.23919/URSIRSB.2017.8267373

    Google Scholar 

  39. 39.

    T.Kojima, M.Kroug, A.Gonzalez, et al., IEEE Trans. Terahertz Sci. Technol., 8, No. 6, 638–646 (2018). https://doi.org/https://doi.org/10.1109/TTHZ.2018.2873487

  40. 40.

    T.Kojima, H.Kiuchi, K. Uemizu, et al., Astron. Astrophys., 640, L9 (2020). https://doi.org/https://doi.org/10.1051/0004-6361/202038713

  41. 41.

    R.Hesper, A.Khudchenko, A.M.Baryshev, et al., IEEE Trans. Terahertz Sci. Technol., 7, No. 6, 686–693 (2017). https://doi.org/https://doi.org/10.1109/TTHZ.2017.2758270

  42. 42.

    A. Khudchenko, R.Hesper, A.M.Baryshev, et al., IEEE Trans. Terahertz Sci. Technol., 9, No. 6, 532–539 (2019). https://doi.org/https://doi.org/10.1109/TTHZ.2019.2939003

  43. 43.

    F. Giazotto, T.T.Heikkilä, A. Luukanen, et al., Rev. Mod. Phys., 78, No. 1, 217–274 (2006). https://doi.org/https://doi.org/10.1103/RevModPhys.78.217

  44. 44.

    J. N. Ullom, AIP Conf. Proc., 605, 135–140 (2002). https://doi.org/https://doi.org/10.1063/1.1457613

  45. 45.

    M.Tarasov and V. Edelman, in: A. Sidorenko, ed., Functional Nanostructures and Metamaterials for Superconducting Spintronics. Nanoscience and Technology, Springer, Cham (2018), p. 91–116. https://doi.org/https://doi.org/10.1007/978-3-319-90481-8.5

  46. 46.

    A. V. Feshchenko, L.Casparis, I. M.Khaymovich, et al., Phys. Rev. Appl., 4, No. 3, 034001 (2015). https://doi.org/https://doi.org/10.1103/physrevapplied.4.034001

  47. 47.

    J.Pekola, J. Low Temperature Phys., 135, Nos. 5–6, 723–744 (2004). https://doi.org/https://doi.org/10.1023/b:jolt.0000029516.18146.42

  48. 48.

    E. Isosaari, T. Holmqvist, M.Meschke, et al., The European Phys. J. Special Topics, 172, No. 1, 323–332 (2009). https://doi.org/https://doi.org/10.1140/epjst/e2009-01057-y

  49. 49.

    J.P. Pekola, A. J.Manninen, M.M. Leivo, et al., Phys. B, 280, Nos. 1–4, 485–490 (2000). https://doi.org/https://doi.org/10.1016/S0921-4526(99)01842-6

  50. 50.

    H.Q. Nguyen, T.Aref, V. J.Kauppila, et al., New J. Phys., 15, No. 8, 085013 (2013). https://doi.org/https://doi.org/10.1088/1367-2630/15/8/085013

  51. 51.

    A. M.Clark, N. A. Miller, A. Williams, et al., Appl. Phys. Lett., 86, No. 17, 173508 (2005). https://doi.org/https://doi.org/10.1063/1.1914966

  52. 52.

    G.C.O’Neil, Improving NIS Tunnel Junction Refrigerators: Modeling, Materials, and Traps: A thesis for the degree of Doctor of Physics, University of Colorado, Boulder (2011).

    Google Scholar 

  53. 53.

    M. Nahum and J. M. Martinis, Appl. Phys. Lett., 63, No. 22, 3075–3077 (1993). https://doi.org/https://doi.org/10.1063/1.110237

  54. 54.

    M. Nahum, P. L.Richards, and C. A˙ Mears, IEEE Trans. Appl. Supercond., 3, No. 1, 2124–2127 (1993). https://doi.org/https://doi.org/10.1109/77.233921

  55. 55.

    A.Vystavkin, D. Shuvaev, L. Kuzmin, and M.Tarasov, J. Exp. Theor. Phys., 88, No. 3, 598–602 (1999). https://doi.org/https://doi.org/10.1134/1.558834

  56. 56.

    L.Kuzmin, I. Devyatov, and D.Golubev, Proc. SPIE, 3465, 193–199 (1998). https://doi.org/https://doi.org/10.1117/12.331165

  57. 57.

    T. L. R. Brien, P. A. R. Ade, P. S. Barry, et al., Appl. Phys. Lett., 105, No. 4, 043509 (2014). https://doi.org/https://doi.org/10.1063/1.4892069

  58. 58.

    D. R. Schmidt, W. D. Duncan, K.D. Irwin, et al., Nucl. Instrum. Methods Phys. Res., 559, No. 2, 516–518 (2006). htpps://doi.org/10.1016/j.nima.2005.12.043

  59. 59.

    D. R. Schmidt, K.W. Lehnert, A.M.Clark, et al., Appl. Phys. Lett., 86, No. 5, 053505 (2005). https://doi.org/https://doi.org/10.1063/1.1855411

  60. 60.

    I. A. Devyatov, P. A.Krutitskiy, and M. Y.Kupriyanov, JETP Lett., 84, No. 2, 57–61 (2006). https://doi.org/https://doi.org/10.1134/S0021364006140037

  61. 61.

    I. A. Devyatov and M. Y.Kupriyanov, JETP Lett., 80, No. 10, 646–650 (2004). https://doi.org/https://doi.org/10.1134/1.1857272

  62. 62.

    M.Tarasov, V. Edelman, S.Mahashabde, et al., Appl. Phys. Lett., 110, No. 24, 242601 (2017). https://doi.org/https://doi.org/10.1063/1.4986463

  63. 63.

    R. A.Yusupov, A. A. Gunbina, A. M.Chekushkin, et al., Phys. Solid State, 62, No. 9, 1567–1570 (2020). https://doi.org/https://doi.org/10.1134/S106378342009036X

  64. 64.

    A. A.Gunbina, S. A. Lemzyakov, M. A.Tarasov, et al., JETP Lett., 111, No. 10, 539–542 (2020). https://doi.org/https://doi.org/10.1134/S0021364020100094

  65. 65.

    A.M. Chekushkin, M.A.Tarasov, R.A.Yusupov, et al., Trudy MFTI, 10, No. 2, 64–71 (2018).

    Google Scholar 

  66. 66.

    http://w0.sao.ru/hq/sekbta/

  67. 67.

    G.Yakopov, M.Tarasov, A. Gunbina, et al., EPJ Web Conf., 195, 05014 (2018). https://doi.org/https://doi.org/10.1051/epjconf/201819505014

  68. 68.

    I. I. Zinchenko, Radiophys. Quantum Electron., 46, Nos. 8–9, 577–593 (2003). https://doi.org/https://doi.org/10.1023/B:RAQE.0000024989.12653.a0

  69. 69.

    N. S.Kardashev, I. D. Novikov, V. N. Lukash, et al., Phys.-Usp., 57, No. 12, 1199–1228 (2014). https://doi.org/https://doi.org/10.3367/UFNe.0184.201412c.1319

  70. 70.

    V. K.Dubrovich, Sov. Astron. Lett., 3, 128–129 (1997).

    ADS  Google Scholar 

  71. 71.

    V.K.Dubrovich and A. A. Lipovka, Astron. Astrophys., 296, 307–309 (1995).

    ADS  Google Scholar 

  72. 72.

    V. K.Dubrovich, Astron. Astrophys., 324, No. 1, 27–31 (1997).

    ADS  Google Scholar 

  73. 73.

    D. Galli and F. Palla, Annu. Rev. Astron. Astrophys., 51, 163–206 (2013). https://doi.org/https://doi.org/10.1146/annurev-astro-082812-141029

  74. 74.

    R.Güsten, H. Wiesemeyer, D.Neufeld, et al., Nature., 568, No. 7752, 357–359 (2019). https://doi.org/https://doi.org/10.1038/s41586-019-1090-x

  75. 75.

    I. Zinchenko, V.Dubrovich, and C.Henkel, Mon. Not. R. Astron. Soc., 415, No. 1, L78–L80 (2011). https://doi.org/https://doi.org/10.1111/j.1745-3933.2011.01083.x

  76. 76.

    I. D. Novikov, S. F. Likhachev, U. A. Shekinov, et al., Phys. Usp., 64, No. 4. https://doi.org/https://doi.org/10.3367/UFNe.2020.12.038898

  77. 77.

    M.Kamionkowski and E.D.Kovetz, Ann. Rev. Astron. Astrophys., 54, 227–269 (2016). https://doi.org/https://doi.org/10.1146/annurev-astro-081915-023433

  78. 78.

    P. A. R. Ade, M. Aguilar, et al., Astrophys. J., 848, No. 2, 121–136 (2017). https://doi.org/https://doi.org/10.3847/1538-4357/aa8e9f

  79. 79.

    https://www.cosmos.esa.int/web/planck

  80. 80.

    V. K.Dubrovich and S. I.Grachev, Astron. Lett., 41, No. 10, 537–548 (2015). https://doi.org/https://doi.org/10.1134/S1063773715100023

  81. 81.

    V. K.Dubrovich and S. I.Grachev, Astron. Lett., 42, No. 11, 713–720 (2016). https://doi.org/https://doi.org/10.1134/S1063773716110025

  82. 82.

    V.K.Dubrovich, S. I. Grachev, and V.G.Romanuk, Astron. Lett., 35, No. 11, 723–729 (2009). https://doi.org/https://doi.org/10.1134/S1063773709110012

  83. 83.

    V. K.Dubrovich and S. I.Grachev, Astron. Lett., 44, No. 4, 213–219 (2018). https://doi.org/https://doi.org/10.1134/S1063773718040011

  84. 84.

    V. Dubrovich, S. Grachev, and T. Zalialiutdinov, Astron. Astrophys., 619, A29 (2018). https://doi.org/https://doi.org/10.1051/0004-6361/201833554

  85. 85.

    V. K.Dubrovich, Astron. Lett., 29, No. 1, 6–9 (2003). https://doi.org/https://doi.org/10.1134/1.1537371

  86. 86.

    S. I.Grachev and V. K.Dubrovich, Astron. Lett., 37, No. 5, 293–301 (2011). https://doi.org/https://doi.org/10.1134/S1063773711040013

  87. 87.

    https://www.jwst.nasa.gov

  88. 88.

    P.V. Shcheglov, Problems of Optical Astronomy [in Russian], Nauka, Moscow (1980).

    Google Scholar 

  89. 89.

    A.G. Kislyakov and K. S. Stankevich, Radiophys. Quantum Electron., 10, Nos. 9–10, 695–708 (1967). https://doi.org/https://doi.org/10.1007/BF01031599

  90. 90.

    V. I.Nosov, O. S.Bol’shakov, G.M.Bubnov, et al., Inst. Exp. Tech., 59, No. 3, 374–380 (2016). https://doi.org/https://doi.org/10.1134/S0020441216020111

  91. 91.

    G.M.Bubnov, V. F.Vdovin, V.Yu.Bukov, et al., in: 32nd URSI GASS, 19–26 August 2017, Montreal, 8105000. https://doi.org/10.23919/URSIGASS.2017.8105000

  92. 92.

    G.M.Bubnov and P.M. Zemlyanukha, “Computer program 2019664403 RF. Data processing program for atmospheric transparency in the millimeter wavelength range” [in Russian], No. 2019663109, claimed: October 15, 2019, published: November 6, 2019.

  93. 93.

    G.M.Bubnov, V.F.Grigorev, V. F.Vdovin, et al., in: em 30th Int. Symp. Space THz Technol. (ISSTT2019), 15–17 April 2019, Gothenburg, Sweden, p. 143–148.

  94. 94.

    H. J. Liebe, P. W. Rosenkranz, and G. A. Hufford, J. Quant. Spectrosc. Radiat. Transf., 48, Nos. 5–6, 629–643 (1992). https://doi.org/https://doi.org/10.1016/0022-4073(92)90127-P

  95. 95.

    L. S.Rothman, I.E. Gordon, Y.Babikov, et al., J. Quant. Spectrosc. Radiat. Transf., 130, 4–50 (2013). https://doi.org/https://doi.org/10.1016/j.jqsrt.2013.07.002

  96. 96.

    N. Jacquinet-Husson, L.Crepeau, R. Armante, et al., J. Quant. Spectrosc. Radiat. Transf., 112, No. 15, 2395–2445 (2011). https://doi.org/https://doi.org/10.1016/j.jqsrt.2011.06.004

  97. 97.

    S.V. Shytov, V. F.Vdovin, I. I. Zinchenko, et al., “Test of the radiometer with a SIS mixer at the RT-25*2 radio telescope” [in Russian], preprint No. 309, Inst. Appl. Phys. Rus. Acad. Sci., Nizhny Novgorod (1992).

  98. 98.

    Y. N. Artemenko, Y.Yu.Balega, A. M. Baryshev, et al., in: ISSTT2019, 15–17 April 2019, Gothenburg, Sweden, p. 196–201.

  99. 99.

    K. I. Rudakov, P. N. Dmitriev, A.M.Baryshev, et al., Radiophys. Quantum Electron., 62, Nos. 7–8, 547–555 (2019). https://doi.org/https://doi.org/10.1007/s11141-020-10001-7

  100. 100.

    J.R.Tucker, IEEE J. Quantum Electron., 15, No. 11, 1234–1258 (1979). https://doi.org/https://doi.org/10.1109/JQE.1979.1069931

  101. 101.

    V. P.Koshelets and S. V. Shitov, Supercond. Sci. Technol., 13, No. 5, R53–R59 (2000). https://doi.org/https://doi.org/10.1088/0953-2048/13/5/201

  102. 102.

    V. P.Koshelets, P. N.Dmitriev, A.B.Ermakov, et al., Radiophys. Quantum Electron., 48, No. 10–11, 844–850 (2005). https://doi.org/https://doi.org/10.1007/s11141-006-0016-2

  103. 103.

    V. P.Koshelets, L. V. Filipenko, V.B.Borisov, et al., Radiophys. Quantum Electon., 50, Nos. 10–11, 847–851 (2007). https://doi.org/https://doi.org/10.1007/s11141-007-0076-y

  104. 104.

    G. de Lange, M. Birk, D.Boersma, et al., Supercond. Sci. Technol., 23, No. 4, 045016 (2010). https://doi.org/https://doi.org/10.1088/0953-2048/23/4/045016

  105. 105.

    A. de Lange, M. Birk, G. de Lange, et al., Atmos. Meas. Tech., 5, 487–500 (2012). https://doi.org/https://doi.org/10.5194/amt-5-487-2012

  106. 106.

    V. P.Koshelets, P. N.Dmitriev, M. I. Faley, et al., IEEE Trans. Terahertz Sci. Technol., 5, No. 4, 687–694 (2015). https://doi.org/https://doi.org/10.1109/TTHZ.2015.2443500

  107. 107.

    P. N.Dmitriev, L.V. Filippenko, and V. P.Koshelets, in: E. L.Wolf, G.B.Arnold, M. A.Gurvitch, and J. F. Zasadzinski, eds., Josephson Junctions: History, Devices, and Applications, Pan Stanford Publishing Pte. Ltd., Singapore (2017), p. 185–244.

  108. 108.

    M. Li, J.Yuan, N.Kinev, et al., Phys. Rev. B, 86, 060505 (2012). https://doi.org/https://doi.org/10.1103/PhysRevB.86.060505

  109. 109.

    N. V.Kinev, L. V. Filippenko, M. Y. Li, et al., Radiophys. Quantum Electron., 56, Nos. 8–9, 582–590 (2013). https://doi.org/https://doi.org/10.1007/s11141-014-9462-4

  110. 110.

    A.Wootten and A.R.Thompson, Proc. IEEE, 97, No. 8, 1463–1471 (2009). https://doi.org/https://doi.org/10.1109/JPROC.2009.2020572

  111. 111.

    R.Gusten, R. S.Booth, C.Cesarsky, et al., Proc. SPIE, 6267, 626714 (2006). https://doi.org/https://doi.org/10.1117/12.670798

  112. 112.

    K. I.Rudakov, V.P.Koshelets, A. M. Baryshev, et al., Radiophys. Quantum Electron., 59, Nos. 8–9, 711–714 (2017). https://doi.org/https://doi.org/10.1007/s11141-017-9739-5

  113. 113.

    V. Y. Belitsky, S. W. Jacobsson, L. V. Filippenko, and E. L.Kollberg, Microw. Opt. Technol. Lett., 10, No. 2, 74–78 (1995). https://doi.org/https://doi.org/10.1002/mop.4650100203

  114. 114.

    A. M. Belyantsev and E. V.Klishin, Radiophys. Quantum Electron., 16, No. 3, 363–364 (1973). https://doi.org/https://doi.org/10.1007/BF01032373

  115. 115.

    P.K. Day, H. G. LeDuc, B. A. Mazin, et al., Nature, 425, 817–821 (2003). https://doi.org/https://doi.org/10.1038/nature02037

  116. 116.

    A. V. Sergeev, V.V.Mitin, and B. S.Karasik, Appl. Phys. Lett., 80, No. 5, 817–819 (2002). https://doi.org/https://doi.org/10.1063/1.1445462

  117. 117.

    S. Doyle, P. Mauskopf, J.Naylon, et al., J. Low Temperature Phys., 151, 530–536 (2008). https://doi.org/https://doi.org/10.1007/s10909-007-9685-2

  118. 118.

    M.R. Vissers, J.E.Austermann, M. Malnou, et al., Appl. Phys. Lett., 116, No. 3, 032601 (2020). https://doi.org/https://doi.org/10.1063/1.5138122

  119. 119.

    A.Wandui, J.Bock, C.Frez, et al., J. Appl. Phys., 128, 044508 (2020). https://doi.org/https://doi.org/10.1063/5.0002413

  120. 120.

    A. Paiella, P.A.R.Ade, E. S.Battistelli, et al., J. Low Temp. Phys., 199, 491–501 (2020). https://doi.org/https://doi.org/10.1007/s10909-020-02372-y

  121. 121.

    P. Day, H. G. Leduc, C.D.Dowell, et al., J. Low Temp. Phys., 151, 477–482 (2008). https://doi.org/https://doi.org/10.1007/s10909-007-9676-3

  122. 122.

    W. S. Holland, D. Bintley, E. L.Chapin, et al., Mon. Not. R. Astron. Soc., 430, No. 4, 2513–2533 (2013). https://doi.org/https://doi.org/10.1093/mnras/sts612

  123. 123.

    J. A. Bonetti, A.D.Turner, M.Kenyon, et al., IEEE Trans. Appl. Supercond., 21, No. 3, 219–222 (2011). https://doi.org/https://doi.org/10.1109/TASC.2010.2093858

  124. 124.

    G.C. Jaehnig, K. Arnold, J.Austermann, etal., J. Low Temperature Phys., 199, 646–653 (2020). https://doi.org/https://doi.org/10.1007/s10909-020-02425-2

  125. 125.

    A. D. Semenov, G. N. Gol’tsman, and R. Sobolewski, Supercond. Sci. Technol., 15, No. 4, R1–R16 (2002). https://doi.org/https://doi.org/10.1088/0953-2048/15/4/201

  126. 126.

    G.Yakopov, M.Tarasov, A. Gunbina, et al., EPJ Web Conf., 195, 05014 (2018). https://doi.org/https://doi.org/10.1051/epjconf/201819505014

  127. 127.

    M. A.Tarasov, A. A.Gunbina, S.Mahashabde, et al., IEEE Trans. Appl. Supercond., 30, No. 3, 2300106 (2020). https://doi.org/https://doi.org/10.1109/TASC.2019.2941857

  128. 128.

    S.Mahashabde, A. Sobolev, A. Bengtsson, et al., IEEE Trans. Terahertz Sci. Technol., 5, No. 1, 145–152 (2015). https://doi.org/https://doi.org/10.1109/TTHZ.2014.2362010

  129. 129.

    S.Mahashabde, A. Sobolev, M.A.Tarasov, and L. S.Kuzmin, IEEE Trans. Terahertz Sci. Technol., 5, No. 1, 37–43 (2015). https://doi.org/https://doi.org/10.1109/TTHZ.2014.2377247

  130. 130.

    M.Tarasov, A. Sobolev, A.Gunbina, et al., J. Appl. Phys., THZ2019, No. 1, 174501 (2019). https://doi.org/https://doi.org/10.1063/1.5054160@jap.2019.THZ2019.issue-1

  131. 131.

    M. A.Tarasov, A. S. Sobolev, A. M.Chekushkin, R.A.Yusupov, and A. A. Gunbina, Patent No. 2684897 RF, IPC G01J 5/02 (2006.01), “Wideband terahertz detector No. 2018124492” [in Russian], claimed: July 4, 2018, published: April 16, 2019, IRE RAS.

  132. 132.

    A. A.Gunbina, M. A.Tarasov, S. A. Lemzyakov, et al., Phys. Solid State, 62, No. 9, 1604-1611 (2020). https://doi.org/https://doi.org/10.1134/S1063783420090097

  133. 133.

    M. Abitbol, Z. Ahmed, D. Barron, et al., https://arxiv.org/abs/1706.02464

  134. 134.

    L. Ferrari, O.Yurduseven, N. Llombart, et al., IEEE Trans. Terahertz Sci. Technol., 8, No. 1, 127–139 (2017). https://doi.org/https://doi.org/10.1109/TTHZ.2017.2764378

  135. 135.

    M. A.Tarasov, S. Makhashabde, A. A. Gunbina, et al., Phys. Solid State, 62, No. 9, 1580-1584 (2020). https://doi.org/https://doi.org/10.1134/S1063783420090292

  136. 136.

    http://www.ipme.ru/ipme/labs/RT-70/source/start.html

  137. 137.

    http://www.asc.rssi.ru/millimetron/millim.html

  138. 138.

    V. S.Edel’man, Instrum. Exp. Tech., 52, No. 2, 301–307 (2009). https://doi.org/https://doi.org/10.1134/S002044120902033X

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. A. Gunbina.

Additional information

P. N. Dmitriev is deceased

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 63, Nos. 7, pp. 533–556, July 2020.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Balega, Y.Y., Baryshev, A.M., Bubnov, G.M. et al. Superconducting Receivers for Space, Balloon, and Ground-Based Sub-Terahertz Radio Telescopes. Radiophys Quantum El 63, 479–500 (2020). https://doi.org/10.1007/s11141-021-10073-z

Download citation