Skip to main content
Log in

Development of Photoinjector Accelerator Complex at the Institute of Applied Physics of the Russian Academy of Sciences: Research Status and Prospects

  • Published:
Radiophysics and Quantum Electronics Aims and scope

This work is devoted to the studies performed at the Institute of Applied Physics of the Russian Academy of Sciences and aimed at the development of the photoinjector accelerator complex, which ensures formation of the electron bunches with charges of up to 100 pC and particle energies of 3 to 5 MeV. The key elements of the complex are described, namely, the accelerating cavity powered by the klystron with an operation frequency of 2.45 GHz and a power of 5 MW, a photocathode based on diamond films, a high-power ultraviolet laser, and a system for synchronizing the laser pulses with the phase of the accelerating microwave field. The design parameters of the components of the complex are presented, and the state of research related to its realization is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. S. Fraser, R. L.Sheffield, E.R.Gray, and G.W. Rodenz, IEEE Trans. Nucl. Sci., 32, No. 5, 1791–1793 (1985). https://doi.org/https://doi.org/10.1109/TNS.1985.4333725

  2. J. B.Rosenzweig, N.Barov, and E.Colby, IEEE Trans. Plasma Sci., 24, No. 2, 409–420 (1996). https://doi.org/https://doi.org/10.1109/27.510005

  3. R. Akre, D.Dowell, P. Emma, et al., Phys. Rev. ST Accel. Beams, 11, No. 3, 030703 (2008). https://doi.org/https://doi.org/10.1103/PhysRevSTAB.11.030703

  4. F. Stephan, C. H. Boulware, M.Krasilnikov, et al., Phys. Rev. ST Accel. Beams, 13, No. 2, 020704 (2010). https://doi.org/https://doi.org/10.1103/PhysRevSTAB.13.020704

  5. J. G. Power, in: AIP Conf. Proc., 1299, 20–28 (2010). https://doi.org/https://doi.org/10.1063/1.3520316

  6. http://www.toriy.ru/ru/kly.html

  7. S.V. Kuzikov, S. Shchelkunov, and A.A.Vikharev, in: AIP Conf. Proc., 1812, 080005 (2017). https://doi.org/https://doi.org/10.1063/1.4975891

  8. S. V.Kuzikov, S. A. Bogdanov, E. I.Gacheva, et al., in: Proc. 38th Int. Free-Electron Laser Conf. (FEL-2017), August 20–25, 2017, Santa Fe, USA, pp. 436–438. https://doi.org/10.18429/JACoW-FEL2017-WEP012

  9. L. Serafini and J.Rosenzweig, Phys. Rev. E, 55, No. 6, 7565–7590 (1997). https://doi.org/https://doi.org/10.1103/PhysRevE.55.7565

  10. S. Y. Mironov, A.K. Poteomkin, E. I. Gacheva, et al., Laser Phys. Lett., 13, No. 5, 055003 (2016). https://doi.org/https://doi.org/10.1088/1612-2011/13/5/055003

  11. S.Yu.Mironov, A.V.Andrianov, E. I. Gacheva, et al., Phys. Usp., 60, No. 10, 1039–1050 (2017). https://doi.org/https://doi.org/10.3367/UFNe.2017.03.038143

  12. I.Kuzmin, S.Mironov, E.Gacheva, et al., Laser Phys. Lett., 16, No. 1, 015001 (2019). https://doi.org/https://doi.org/10.1088/1612-202X/aaef95

  13. Yu. I. Alekshin, G. M. Altshuller, O. N. Pavlovsky, et al., Int. J. Infrared Millim. Waves, 11, No. 8, 961–971 (1990). https://doi.org/https://doi.org/10.1007/BF01008638

  14. A. A.Krasil’nikov, Yu.Yu.Kulikov, V.G. Ryskin, et al., Instrum. Exp. Tech., 54, No. 1, 118–123 (2011). https://doi.org/https://doi.org/10.1134/S0020441211010167

  15. D. S. Makarov, M.Yu.Tretyakov, A. P. Shkaev, et al., Appl. Phys. Lett., 105, No. 6, 063502 (2014). https://doi.org/https://doi.org/10.1063/1.4891503

  16. J. Doose, A. Guarnieri, W. Neustock, et al., Z. Naturforsch., 44, No. 6, 538–550 (1989). https://doi.org/https://doi.org/10.1515/zna-1989-0609

  17. R.P. Mildren and J.Rabeau, eds., Optical Engineering of Diamond, Wiley–VCH, Weinheim,(2013).

    Google Scholar 

  18. N. A. Feoktistov, S.A.Grudinkin, M.V. Rybin, et al., Tech. Phys. Lett., 37, No. 4, 322–325 (2011). https://doi.org/https://doi.org/10.1134/S1063785011040079

  19. A. L. Vikharev, O. A. Ivanov, and S. V.Kuzikov, “Diamond photocathode” [in Russian], RF Patent No. 2658580 (2018).

  20. K. J.P.Quintero, S.Antipov, A.V. Sumant, et al., Appl. Phys. Lett., 105, No. 12, 123103 (2014). https://doi.org/https://doi.org/10.1063/1.4896418

  21. O. A. Williams, Diam. Rel. Mater., 20, Nos. 5–6, 621–640 (2011). https://doi.org/https://doi.org/10.1016/j.diamond.2011.02.015

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Vikharev.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 63, Nos. 5–6, pp. 477–487, May–June 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vikharev, A.A., Vikharev, A.L., Gacheva, E.I. et al. Development of Photoinjector Accelerator Complex at the Institute of Applied Physics of the Russian Academy of Sciences: Research Status and Prospects. Radiophys Quantum El 63, 430–439 (2020). https://doi.org/10.1007/s11141-021-10068-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-021-10068-w

Navigation