Skip to main content
Log in

High-Power Pulsed Terahertz-Wave Large-Orbit Gyrotron for a Promising Source of Extreme Ultraviolet Radiation

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We study the possibility to make a gyrotron generating a power of several kilowatts at a radiation frequency of 1 THz, which will be used in promising plasma studies. In 2008, a pulsed largeorbit gyrotron (LOG) generating a power of 0.4 kW at the third cyclotron harmonic and an operating frequency of 1 THz was implemented successfully. We update this device to create a plasma source of extreme ultraviolet radiation. Earlier experiments showed that this will require a power that is almost an order of magnitude higher. Updating a large-orbit gyrotron will make it possible to increase the generation power up to 4 kW by raising the power of the electron beams and reducing the fraction of the ohmic loss in the cavity. Such a gyrotron is designed to operate with an electron beam with a current of 1.2 A and an accelerating voltage of 100 kV in a pulsed magnetic field of 14 T.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Sidorov, S. V. Razin, S. V. Golubev, et al., Phys. Plasmas, 23, No. 4, 043511 (2016). https://doi.org/10.1063/1.4947219

    Article  ADS  Google Scholar 

  2. A. Shalashov and E. Gospodchikov, IEEE Trans. Antennas Propag., 64, No. 9, 3960–3971 (2016). https://doi.org/10.1109/TAP.2016.2583487

    Article  ADS  Google Scholar 

  3. A. G. Shalashov, A.V.Vodopyanov, I. S. Abramov, et al., Appl. Phys. Lett., 113, No. 15, 153502 (2018). https://doi.org/10.1063/1.5049126

    Article  ADS  Google Scholar 

  4. I. S. Abramov, E. D. Gospodchikov, and A. G. Shalashov, Phys. Rev. Appl., 10, No. 3, 034065 (2018). https://doi.org/10.1103/PhysRevApplied.10.034065

    Article  ADS  Google Scholar 

  5. T. Idehara, H. Tsuchiya, O. Watanabe, Int. J. Infrared Millim. Waves, 27, No. 3, 319–331 (2006). https://doi.org/10.1007/s10762-006-9084-9

    Article  ADS  Google Scholar 

  6. M.Yu.Glyavin, A.G. Luchinin, and G.Yu.Golubiatnikov, Phys. Rev. Lett., 100, No. 1, 015101 (2008). https://doi.org/10.1103/PhysRevLett.100.015101

    Article  ADS  Google Scholar 

  7. V. L. Bratman, Yu.K.Kalynov, and V. N. Manuilov, Phys. Rev. Lett., 102, No. 24, 245101 (2009). https://doi.org/10.1103/PhysRevLett.102.245101

    Article  ADS  Google Scholar 

  8. D. B. McDermott, N.C. Luhmann Jr., A. Kupiszewski, and H.R. Jory, Phys. Fluids, 26, No. 7, 1936–1941 (1983). https://doi.org/10.1063/1.864341

    Article  ADS  Google Scholar 

  9. W. Lawson, W.W. Destler, and C. D. Striffler, IEEE Trans. Plasma Sci., 13, No. 6, 444–453 (1985). https://doi.org/10.1109/TPS.1985.4316458

    Article  ADS  Google Scholar 

  10. K. Irwin, W. W. Destler, W. Lawson, et al., J. Appl. Phys., 69, No. 2, 627–632 (1991). https://doi.org/10.1063/1.347342

    Article  ADS  Google Scholar 

  11. V. L. Bratman, Yu.K.Kalynov, and A. É. Fedotov, Tech. Phys., 43, No. 10, 1219–1225 (1998). https://doi.org/10.1134/1.1259158

    Article  Google Scholar 

  12. V. L. Bratman, A. E. Fedotov, Y.K.Kalynov, et al., IEEE Trans. Plasma Sci., 27, No. 2, 456–461 (1999). https://doi.org/10.1109/27.772273

    Article  ADS  Google Scholar 

  13. V. L. Bratman, Yu.K.Kalynov, V.N.Manuilov, et al., J. Commun. Tech. Electron., 46, No. 6, 688–694 (2001).

    Google Scholar 

  14. V. L. Bratman, Yu.K.Kalynov, V.N.Manuilov, and S.V. Samsonov, Radiophys. Quantum Electron., 48, Nos. 10–11, 731–736 (2005). https://doi.org/10.1007/s11141-006-0001-9

    Article  ADS  Google Scholar 

  15. I.V.Bandurkin, Yu.K.Kalynov, and A.V. Savilov, IEEE Trans. Electron Devices, 62, No. 7, 2356–2359 (2015). https://doi.org/10.1109/TED.2015.2432858

    Article  ADS  Google Scholar 

  16. I.V.Bandurkin, V. L. Bratman, Yu.K.Kalynov, et al., IEEE Trans. Electron Devices, 65, No. 6, 2287–2293 (2018). https://doi.org/10.1109/TED.2018.2797311

    Article  ADS  Google Scholar 

  17. Yu.K.Kalynov, V.N.Manuilov, A. Sh. Fiks, and N. A. Zavolskiy, Appl. Phys. Lett., 114, No. 21, 13502 (2019). https://doi.org/10.1063/1.5094875

    Article  ADS  Google Scholar 

  18. V. L. Bratman, V. G. Zorin, Yu.K.Kalynov, et al., Phys. Plasmas, 18, No. 8. 083507 (2011). https://doi.org/10.1063/1.3622202

    Article  ADS  Google Scholar 

  19. V. L. Bratman, I. V. Izotov, Yu. K. Kalynov, et al., Phys. Plasmas, 20, No. 12, 123512 (2013). https://doi.org/10.1063/1.4853515

    Article  ADS  Google Scholar 

  20. V. L. Bratman, Yu.K.Kalynov, and V. N. Manuilov, J. Commun. Tech. Electron., 56, No. 4, 500 (2011). https://doi.org/10.1134/S1064226911040024

    Article  Google Scholar 

  21. G. I. Zarudneva, Yu. K.,Kalynov, and S.A.Malygin, Radiophys. Quantum Electron., No. 3, 31,254–257 (1988). https://doi.org/10.1007/BF01080388

  22. I.V.Bandurkin, A. E. Fedotov, A. P. Fokin, et al., Proc. 44th Intern. Conf. Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2019), September 1–6, 2019, Paris, 8874410 (2019). https://doi.org/10.1109/IRMMW-THz.2019.8874410.

  23. Y. K. Kalynov, I.V.Bandurkin, V.N.Manuilov, et al., Proc. 44th Intern. Conf. Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2019), September 1–6, 2019, Paris, 8874254 (2019). https://doi.org/10.1109/IRMMW-THz.2019.8874254

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Osharin.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 63, Nos. 5–6, pp. 393–402, March 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalynov, Y.K., Bandurkin, I.V., Zavolskiy, N.A. et al. High-Power Pulsed Terahertz-Wave Large-Orbit Gyrotron for a Promising Source of Extreme Ultraviolet Radiation. Radiophys Quantum El 63, 354–362 (2020). https://doi.org/10.1007/s11141-021-10060-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-021-10060-4

Navigation