Skip to main content
Log in

Universal Subterahertz Large-Orbit Gyrotron: Operation at the Second and Third Cyclotron Harmonics

  • Published:
Radiophysics and Quantum Electronics Aims and scope

Coherent subterahertz radiation in the continuous-wave regime was obtained in a large-orbit gyrotron (LOG) operated at a high harmonic of the cyclotron frequency. An electron–optical system containing a gun with a cusp followed by a section of adiabatic magnetic compression with a factor of 1000 ensures the formation of a 30 keV/0.7 A helical axis-encircling electron beam with acceptable velocity spread and pitch factor in a magnetic field of 5 T. Stable singlemode operation was obtained at frequencies of 0.394 and 0.267 THz with radiation powers of 0.37 and 0.9 kW at the third and second cyclotron harmonics, respectively. Tuning of the generation frequency in the gyrotron during its operation at the second cyclotron harmonic and complex regimes of competition of two waves excited at the second and third cyclotron harmonics are also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. V. Gaponov, M. I. Petelin, and V. L. Yulpatov, Radiophys. Quantum Electron., 10, Nos. 9–10, 794–813 (1967). https://doi.org/10.1007/BF01031607

    Article  ADS  Google Scholar 

  2. G. S. Nusinovich, Introduction to the Physics of Gyrotrons, Johns Hopkins University, Baltimore, MD (2004).

    Google Scholar 

  3. K. R. Chu, Rev. Modern Phys., 76, No. 2, 489–540 (2004). https://doi.org/10.1103/RevModPhys.76.489

    Article  ADS  Google Scholar 

  4. L. R. Becerra, G. J. Gerfer, R. J. Temkin, et al., Phys. Rev. Lett ., 71, 3561–3564 (1993). https://doi.org/10.1103/PhysRevLett.71.3561

  5. M.Yu.Glyavin, A.G. Luchinin, and G.Yu.Golubiatnikov, Phys. Rev. Lett., 100, 015101 (2008). https://doi.org/10.1103/PhysRevLett.100.015101

    Article  ADS  Google Scholar 

  6. V. L. Bratman, Yu.K.Kalynov, and V. N. Manuilov, Phys. Rev. Lett ., 102, 245101 (2009). https://doi.org/10.1103/PhysRevLett.102.245101

    Article  ADS  Google Scholar 

  7. T. Notake, T. Saito, Y. Tatematsu, et al., Phys. Rev. Lett ., 103, 225002 (2009). https://doi.org/10.1103/PhysRevLett.103.225002

    Article  ADS  Google Scholar 

  8. N.P.Venediktov, V.V.Dubrov, V.E. Zapevalov, et al., Radiophys. Quantum Electron., 53, No. 4, 237–243 (2010). https://doi.org/10.1007/s11141-010-9222-z

    Article  ADS  Google Scholar 

  9. S. Alberti, F. Braunmueller, T. M. Tran, et. al., Phys. Rev. Lett ., 111, 205101 (2013). https://doi.org/10.1103/PhysRevLett.111.205101

    Article  ADS  Google Scholar 

  10. T. Idehara, I. Ogawa, S. Mitsudo, et al., IEEE Trans. Plasma Sci., 32, No. 3, 903–909 (2004). https://doi.org/10.1109/TPS.2004.827614

    Article  ADS  Google Scholar 

  11. G. G. Denisov, M.Yu. Glyavin, A. P. Fokin, et al., Rev. Sci. Instrum., 89, 084702 (2018). https://doi.org/10.1063/1.5040242

    Article  ADS  Google Scholar 

  12. R. G. Griffin and T. F. Prisner, Phys. Chem. Chem. Phys., 12, 5737–5740 (2010). https://doi.org/10.1039/c0cp90019b

    Article  Google Scholar 

  13. T. Idehara, T. Saito, I. Ogawa, et al., Appl. Magn. Resonance, 34, 265–275 (2008). https://doi.org/10.1007/s00723-008-0132-6

    Article  Google Scholar 

  14. V. Denisenkov, M. J. Prandolini, M. Gafurov, et al., Phys. Chem. Chem. Phys., 12, 5786–5790 (2010). https://doi.org/10.1039/c003697h

    Article  Google Scholar 

  15. E.A.Nanni, A.B.Barnes, R.G.Griffin, and R. J. Temkin, IEEE Trans. Terahertz Sci. Technol ., 1, No. 1, 145–163 (2011). https://doi.org/10.1109/TTHZ.2011.2159546

    Article  ADS  Google Scholar 

  16. V. S. Bajaj, C. T. Farrar, M. K. Hornstein, et al., J. Magn. Resonance, 213, No. 2, 404–409 (2011). https://doi.org/10.1016/j.jmr.2011.09.010

    Article  ADS  Google Scholar 

  17. A.C.Torrezan, M. A. Shapiro, J.R. Sirigiriet, et al., IEEE Trans. Electron Devices, 58, No. 8, 2777–2783 (2011). https://doi.org/10.1109/TED.2011.2148721

    Article  ADS  Google Scholar 

  18. C. Griesinger, M. Bennati, H.M. Vieth, et al., Prog. Nucl. Magn. Res. Spectr ., 64, 4–28 (2012). https://doi.org/10.1016/j.pnmrs.2011.10.002

    Article  Google Scholar 

  19. M. Blank, P. Borchard, C. Cauffman, et al., in: Proc. 4th Int. Workshop “Strong Microwaves in Plasmas,” 24–30 July 2014, Nizhny Novgorod, p. 13.

  20. H. Jory, “Investigation of electronic interaction with optical resonators for microwave generation and amplification,” R&D Tech. Rep. ECOM-01873-F, Varian Associates, Palo Alto (1968).

  21. D. B. McDermott, N.C. Luhmann, Jr., A. Kupiszewski, and H.R. Jory, Phys. Fluids, 26, No. 7, 1936–1941 (1983). https://doi.org/10.1063/1.864341

    Article  ADS  Google Scholar 

  22. W. Lawson, W.W. Destler, and C. D. Striffler, IEEE Trans. Plasma Sci., 13, No. 6, 444–453 (1985). https://doi.org/10.1109/TPS.1985.4316458

    Article  ADS  Google Scholar 

  23. V. L. Bratman, A. E. Fedotov, Yu.K.Kalynov, et al., IEEE Trans. Plasma Sci., 27, No. 2, 456–461 (1999). https://doi.org/10.1109/27.772273

    Article  ADS  Google Scholar 

  24. I.V.Bandurkin, Yu.K.Kalynov, and A.V. Savilov, IEEE Trans. Electron Devices, 62, No. 7, 2356–2359 (2015). https://doi.org/10.1109/TED.2015.2432858

    Article  ADS  Google Scholar 

  25. I.V.Bandurkin, V. L. Bratman, Yu.K.Kalynov, et al., IEEE Trans. Electron Devices, 65, No. 6, 2287–2293 (2018). https://doi.org/10.1109/TED.2018.2797311

    Article  ADS  Google Scholar 

  26. Yu. K. Kalynov, V. L. Bratman, V.N.Manuilov, and A. Sh. Fix, in: Proc. 8th Int. Workshop “Strong Microwaves: Sources and Applications,” 9–16 July 2011, Nizhny Novgorod, p. 88.

  27. Yu.K.Kalynov and V.N.Manuilov, IEEE Trans. Electron Devices, 63, No. 1, 491–496 (2016). https://doi.org/10.1109/TED.2015.2501023

    Article  ADS  Google Scholar 

  28. Yu.K.Kalynov, V.N.Manuilov, and V.Yu. Zaslavsky, Int. J. Infrared Millim. Terahertz Waves, 39, No. 8, 738–748 (2018). https://doi.org/10.1007/s10762-018-0508-0

    Article  Google Scholar 

  29. V. L. Bratman, T. Idehara, Yu.K.Kalynov, et al., Int. J. Infrared Millim. Terahertz Waves, 27, No. 7, 1063–1071 (2006). https://doi.org/10.1007/s10762-006-9094-7

    Article  ADS  Google Scholar 

  30. S. V. Samsonov, G.G. Denisov, I.G.Gachev, et al., IEEE Trans. Electron Devices, 59, No. 8, 2250–2255 (2012). https://doi.org/10.1109/TED.2012.2196703

    Article  ADS  Google Scholar 

  31. Yu.K.Kalynov, V.N.Manuilov, A. Sh. Fiks, and N. A. Zavolskiy, Appl. Phys. Lett., 114, 213502 (2019). https://doi.org/10.1063/1.5094875

    Article  ADS  Google Scholar 

  32. M. Yu. Tret’yakov and Yu. K. Kalynov, Instrum. Exp. Tech., 49, No. 5, 661–668 (2006). https://doi.org/10.1134/S0020441206050095

    Article  Google Scholar 

  33. A. V. Savilov, P. A. Bespalov, K. Ronald, and A. D. R. Phelps, Phys. Plasmas, 14, No. 11, 113104 (2007). https://doi.org/10.1063/1.2786059

    Article  ADS  Google Scholar 

  34. I.V.Bandurkin, M.Yu.Glyavin, N.A. Zavolsky, et al., Radiophys. Quantum Elecktron., 59, Nos. 8–9., 655–666 (2016). https://doi.org/10.1007/s11141-017-9732-z

    Article  ADS  Google Scholar 

  35. N. S. Ginzburg and S.P. Kuznetsov, in: “Relativistic high-frequency electronics. Problems of increasing power and radiation frequency” [in Russian], Inst. Appl. Phys. USSR Acad. Sci., Gorky (1981), p. 101–144.

  36. N. S. Ginzburg and A. S. Sergeev, Sov. Phys. Tech. Phys., 36, 665–672 (1991).

    Google Scholar 

  37. I.V.Bandurkin, Y. K. Kalynov, P.B.Makhalov, et al., IEEE Trans. Electron Devices, 64, No. 1, 300–305 (2017). https://doi.org/10.1109/TED.2016.2629029

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Osharin.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 63, Nos. 5– 6, pp. 357–368, May–June 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalynov, Y.K., Manuilov, V.N., Osharin, I.V. et al. Universal Subterahertz Large-Orbit Gyrotron: Operation at the Second and Third Cyclotron Harmonics. Radiophys Quantum El 63, 321–331 (2020). https://doi.org/10.1007/s11141-021-10057-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-021-10057-z

Navigation