Skip to main content
Log in

Diffraction of Electromagnetic Waves by Multilayer Graphene Metasurfaces in the Terahertz Frequency Band

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We perform mathematical modeling of diffraction of plane electromagnetic waves by multilayer metasurfaces comprised by elements of graphene nanoribbons. The modeling is based on solving the three-dimensional boundary value diffraction problem by three methods, specifically, those of self-contained units with Floquet channels, the volume integro-differential equation, and approximate boundary conditions. The coefficients of reflection, transmission, and absorption of s- and p-polarized waves by metasurfaces made of elements of rectangular graphene nanoribbons are calculated as functions of the frequency and the incidence angle for various values of the chemical potential with allowance for the geometric and dimensional effects in the terahertz frequency band. It is shown that at the resonant frequencies of the surface plasmon polariton, multilayer metasurfaces comprised by two graphene strips in an elementary cell on substrates, which contain layers of a dielectric and graphene, are electrically controlled efficient wideband terahertz absorbers and polarizers in the reflection regime that are insensitive to incidence angles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.A. Chernozatonskii, P.B. Sorokin, and A.A.Artukh, Russ. Chem. Rev., 83, No. 3, 251 (2014).

    Article  ADS  Google Scholar 

  2. P.-Y.Chen, J.Y. Soric, R. Padooru, et al., New J. Phys., 15, 123029 (2013).

    Article  ADS  Google Scholar 

  3. Ch.Liu, Y.Bai, J. Zhou, et al., J. Korean Phys. Soc., 54, No. 5, 349 (2017).

    Google Scholar 

  4. M. Rahmanzadeh, H. Rajabalipanah, and A. Abdolali, Appl. Opt., 57, 959 (2018).

    Article  ADS  Google Scholar 

  5. L.Peng, X.M. Li, X. Liu, et al., Nanoscale Adv., No. 1, 1452 (2019).

  6. L.Ye, F. Zeng, Y. Zhang, et al., Nanomaterials, 8, No. 10, 834 (2018).

    Article  Google Scholar 

  7. T.Guo and C. Argyropoulos, Opt. Lett., 41, No. 23, 5592 (2016).

    Article  ADS  Google Scholar 

  8. A. Fallahi and J.Perruisseau-Carrier, Phys. Rev. B, 86, 195408 (2012).

    Article  ADS  Google Scholar 

  9. Y. Zhang, Y. Feng, B. Zhu, et al., Opt. Express, 22, No. 19, 22743 (2014).

    Article  ADS  Google Scholar 

  10. A. M. Lerer and G. S. Makeeva, Tech. Phys. Lett., 44, No. 9, 852 (2018).

    Article  ADS  Google Scholar 

  11. A. M. Lerer and G. S. Makeeva, Opt. Spectrosc., 125, No. 6, 1034 (2018).

    Article  ADS  Google Scholar 

  12. G. W. Hanson, J. Appl. Phys., 103, 064302 (2008).

    Article  ADS  Google Scholar 

  13. V. V. Nikol’sky, Decomposition Approach to Electrodynamic Problems [in Russian], Nauka, Moscow (1983).

    Google Scholar 

  14. O. A. Golovanov, J. Commun. Technol. Electron., 51, No. 12, 1338 (2006).

    Article  Google Scholar 

  15. V. V. Nikol’sky, Projection Methods in Electrodynamics [in Russian], Vysshaya Shkola, Moscow (1977).

    Google Scholar 

  16. V. V. Nikol’sky and O.A.Golovanov, Radiotekh. ´ Elektron., 25, No. 3, 751 (1980).

  17. V. V. Nikol’sky and T. I. Lavrova, Radiotekh. ´ Elektron., 23, No. 2, 240 (1978).

  18. O. A. Golovanov, Radiotekh. ´ Elektron., 35, No. 9, 1853 (1990).

  19. A.M. Lerer, J. Commun. Technol. Electron., 57, No. 11, 1151 (2012).

    Article  Google Scholar 

  20. V.F. Kravchenko, O. S. Labun’ko, A.M. Lerer, and G. P. Sinyavsky, Computational Methods in Modern Radiophysics [in Russian], Fizmatlit, Moscow (2009).

    Google Scholar 

  21. A. M. Lerer and I. N. Ivanova, J. Communi. Technol. Electron., 61, No. 5, 486 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A.M. Lerer.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 62, No. 10, pp. 787–800, October 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lerer, A., Makeeva, G.S. & Golovanov, O.A. Diffraction of Electromagnetic Waves by Multilayer Graphene Metasurfaces in the Terahertz Frequency Band. Radiophys Quantum El 62, 700–712 (2020). https://doi.org/10.1007/s11141-020-10016-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-020-10016-0

Navigation