Skip to main content
Log in

Low-Noise Sis Receivers for New Radio-Astronomy Projects

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We have developed, manufactured, and tested a waveguide mixer in the range 211–275 GHz on the basis of the superconductor–insulator–superconductor (SIS) tunnel structures. The methods of manufacturing high-quality tunnel structures on quartz substrates have been worked out. To extend the receiver band, the Nb/AlOx/Nb and Nb/AlN/NbN tunnel junctions with a high current density of up to 20 kA/cm2 are employed. The dependence of the characteristics of the receiving elements on the signal frequency is simulated for the intermediate-frequency band 4–12 GHz. The measurements demonstrate a good agreement of the input band of the receiving structures with the calculated results. The uncorrected noise temperature of the receiver amounts to 24 K at a frequency of 265 GHz, which is only two times higher than the quantum limit. The receivers under development are intended for a number of newly-built ground-based radio telescopes (“Suffa” and LLAMA), as well as for the “Millimetron” space program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.R.Tucker, IEEE J. Quantum Electron., 15, No. 11, 1234 (1979).

    Article  ADS  Google Scholar 

  2. J.R.Tucker and M. J. Feldman, Rev. Mod. Phys., 57, No. 4, 1055 (1985).

    Article  ADS  Google Scholar 

  3. J. W.Kooi, M.Chan, T. G. Phillips, et al., IEEE Trans. Microwave Theory Tech., 40, No. 5, 812 (1992).

    Article  ADS  Google Scholar 

  4. A. Karpov, J.Blondell, M.Voss, and K.H.Gundlach, IEEE Trans. Appl. Supercond., 5, No. 2, 3304 (1995).

    Article  ADS  Google Scholar 

  5. B.D. Jackson, G. de Lange, T. Zijlstra, et al., IEEE Trans. Microwave Theory Tech., 54, No. 2, 547 (2006).

    Article  ADS  Google Scholar 

  6. A.Karpov, D.Miller, F. Rice, et al., IEEE Trans. Appl. Supercond., 17, No. 2, 343 (2007).

    Article  ADS  Google Scholar 

  7. A. R. Kerr, S. K. Pan, S.M.X. Claude, et al., IEEE Trans. Terahertz Sci. Technol., 4, No. 2, 201 (2014).

    Article  ADS  Google Scholar 

  8. A. M. Baryshev, R.Hesper, F. P. Mena, et al., Astron. Astrophys., 577, A129 (2015).

    Article  Google Scholar 

  9. Y. Uzawa, Y. Fujii, A. Gonzalez, et al., IEEE Trans. Appl. Supercond., 25, No. 3, 2401005 (2015).

    Article  Google Scholar 

  10. A.Khudchenko, A.M.Baryshev, K.Rudakov, et al., IEEE Trans. Terahertz Sci. Technol., 6, No. 1, 127 (2016).

    Article  ADS  Google Scholar 

  11. Th. de Graauw, F. P. Helmich, T. G. Phillips, et al., Astron. Astrophys., 518, L6 a(2010).

  12. A. V. Smirnov, A. M. Baryshev, P. de Bernardis, et al., Radiophys. Quantum Electron., 54, Nos. 8–9, 557 (2011).

  13. M.Gurvitch, W.A.Washington, and H.A.Huggins, Appl. Phys. Lett., 42, No. 5, 472 (1983).

    Article  ADS  Google Scholar 

  14. H. A. Huggins, J. Appl. Phys., 57, No. 6, 2103 (1985).

    Article  ADS  Google Scholar 

  15. H.Kroger, L. N. Smith, and D.W. Jillie, Appl. Phys. Lett., 39, No. 3, 280 (1981).

    Article  ADS  Google Scholar 

  16. V.P. Koshelets, S.A. Kovtonyuk, I. L. Serpuchenko, et al., IEEE Trans. Magn., 27, No. 2, 3141 (1991).

    Article  ADS  Google Scholar 

  17. P. N. Dmitriev, A.B. Ermakov, and A. G.Kovalenko, IEEE Trans. Appl. Supercond., 9, No. 2, 3970 (1999).

    Article  ADS  Google Scholar 

  18. L. V. Filippenko, S. V. Shitov, and P.N.Dmitriev, IEEE Trans. Appl. Supercond., 11, No. 1, 816 (2001).

    Article  ADS  Google Scholar 

  19. P. N. Dmitriev, I. L. Lapitskaya, L. V. Filippenko, et al., IEEE Trans. Appl. Supercond., 13, No. 2, 107 (2003).

    Article  ADS  Google Scholar 

  20. A. A. Golubov, E.P. Houwman, J. G. Gijsbertsen, et al., Phys. Rev. B, 51, No. 2, 1073 (1995).

    Article  ADS  Google Scholar 

  21. S. V. Shitov, “Integral devices on superconductor tunnel junctions for the millimeter- and submillimeterwave receivers,” D. Sci. Thesis [in Russian], V. A.Kotel’nikov Institute of Radioengineering and Electronics of the Russian Academy of Sciences, Moscow (2003). 555

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Koshelets.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 62, No. 7–8, pp. 613–622, August–September 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rudakov, K.I., Dmitriev, P.N., Baryshev, A.M. et al. Low-Noise Sis Receivers for New Radio-Astronomy Projects. Radiophys Quantum El 62, 547–555 (2019). https://doi.org/10.1007/s11141-020-10001-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-020-10001-7

Navigation