Skip to main content
Log in

Stretching, Amplification, and Compression of Microwave Pulses Using Helically Corrugated Waveguides

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We demonstrate the possible implementation of the chirped pulse amplification (CPA) method, which is widely used in optics, for the microwave frequency band. This method is based on the preliminary elongation of the incident pulse in the stretcher, sequential amplification of spectral components in a wideband amplifier, and final compression in a line with negative dispersion (compressor). A circuit is considered in which multifold, helically corrugated waveguides are used as an operating space in each section, including a stretcher, an amplifier, and a compressor. The dispersion characteristics of such waveguides can vary significantly when its geometrical parameters are changed, which makes it possible to ensure optimal dispersion characteristics in the stretcher and compressor, as well as the largest gain bandwidth in the amplifier. In addition, these dispersive elements allow us to avoid spurious reflection of the signal due to the absence of a stopband in the operating frequency range. Simulations within the framework of the coupledwave approach showed the prospects of the circuit proposed. In particular, using an experimentally realized 30-GHz gyro-TWT, the peak power of a 200-ns, 300-W incident pulse can be increased up to 4 MW, which is about six times higher than the power of the driving electron beam. With direct amplification (in the absence of a stretcher and a compressor) of the specified incident pulse in the same gyro-TWT, the output peak power does not exceed 250 kW.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Strickland and G.Mourou, Opt. Commun., 56, 219 (1985).

    Article  ADS  Google Scholar 

  2. V. V. Lozhkarev, G. I. Freidman, V.N.Ginzburg, et al., Laser Phys. Lett ., 4, No. 6, 421 (2007).

    Article  ADS  Google Scholar 

  3. A.V. Korzhimanov, A.A.Gonoskov, E.A.Khazanov, and A.M. Sergeev, Phys. Usp., 54, 9 (2011).

    Article  ADS  Google Scholar 

  4. C. Danson, D. Hillier, N. Hopps, and D. Neely, High Power Laser Science and Engineering, 3, E3 (2015).

    Article  Google Scholar 

  5. E. Brookner, Scientific American, 252, No. 2, 94 (1985).

    Article  Google Scholar 

  6. S. J. Cooke and G.G.Denisov, IEEE Trans. Plasma Sci., 26, No. 3, 519 (1998).

    Article  ADS  Google Scholar 

  7. G.G.Denisov, V. L.Bratman, A. D. R.Phelps, and S.V. Samsonov, IEEE Trans. Plasma Sci., 26, No. 3, 508 (1998).

    Article  ADS  Google Scholar 

  8. V. L. Bratman, A. W.Cross, G. G. Denisov, et al., Phys. Rev. Lett ., 84, No. 12, 2746 (2000).

    Article  ADS  Google Scholar 

  9. V. L. Bratman, G. G. Denisov, S.V. Samsonov, et al., Radiophys. Quantum Electron., 50, No. 2, 95 (2007).

    Article  ADS  Google Scholar 

  10. W. He, C.R.Donaldson, F. Li, et al., Terahertz Sci. Technol ., 4, No. 1, 9 (2011).

    Google Scholar 

  11. S. V. Samsonov, I.G.Gachev, G. G. Denisov, et al., IEEE Trans. Electron Devices, 61, No. 12, 4264 (2014).

    Article  ADS  Google Scholar 

  12. W. He, C.R.Donaldson, L. Zhang, et al., Phys. Rev. Lett ., 119, No. 18, 184801 (2017).

    Article  ADS  Google Scholar 

  13. S. V. Samsonov, A.D.R.Phelps, V. L. Bratman, et al., Phys. Rev. Lett ., 92, No. 11, 118301 (2004).

    Article  ADS  Google Scholar 

  14. G. Burt, S.V. Samsonov, A. D. R.Phelps, et al., IEEE Trans. Plasma Sci., 33, No. 2, 661 (2005).

    Article  ADS  Google Scholar 

  15. N. S.Ginzburg, I.V. Zotova, A. S. Sergeev, et al., Phys. Plasmas, 22, 113111 (2015).

    Article  ADS  Google Scholar 

  16. E. Hecht, Optics, 4th ed., Pearson Addison Wesley, Reading (2004).

    Google Scholar 

  17. V. L. Bratman, Yu.K.Kalynov, V.N.Manuilov, and S.V. Samsonov, Radiophys. Quantum Electron., 48, Nos. 10–11, 731 (2005).

    Article  ADS  Google Scholar 

  18. N. S.Ginzburg, N.A. Zavolskii, G. S.Nusinovich, and A. S. Sergeev, Radiophys. Quantum Electron., 29, No. 1, 89 (1986).

    Article  ADS  Google Scholar 

  19. A. A. El’chaninov, S. D.Korovin, V. V. Rostov, et al., JETP Lett ., 77, No. 6, 266 (2003).

    Article  ADS  Google Scholar 

  20. S. D.Korovin, A. A. Eltchaninov, V. V. Rostov, et al., Phys. Rev. E, 74, 1, 016501 (2006).

    Article  ADS  Google Scholar 

  21. V. V.Rostov, I.V.Romanchenko, M. S.Pedos, et al., Phys. Plasmas, 23, 093103 (2016).

    Article  ADS  Google Scholar 

  22. N. S.Ginzburg, G.G.Denisov, E.B.Abubakirov, et al., Radiophys. Quantum Electron., 59, Nos. 8–9, 613 (2016).

    ADS  Google Scholar 

  23. N. S. Ginzburg, G. G. Denisov, M.N. Vilkov, et al., Phys. Plasmas, 24, No. 2, 023103 (2017).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Ginzburg.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 62, No. 7–8, pp. 528–538, July–August 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ginzburg, N.S., Yurovsky, L.A., Vilkov, M.N. et al. Stretching, Amplification, and Compression of Microwave Pulses Using Helically Corrugated Waveguides. Radiophys Quantum El 62, 472–480 (2019). https://doi.org/10.1007/s11141-020-09993-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-020-09993-z

Navigation