Skip to main content
Log in

Studies of a Gyrotron Traveling-Wave Tube with Helically Corrugated Waveguides at IAP Ras: Results and Prospects

  • Published:
Radiophysics and Quantum Electronics Aims and scope

The gyrotron traveling-wave tube (gyro-TWT) is a wideband version of gyrotron amplifiers, which produce pulsed or continuous-wave radiation in the millimeter-wavelength band at a power level that exceeds the powers produced by conventional TWTs with slow-wave structures and rectilinear beams by 1–2 orders of magnitude. Since 1996, researchers at the Institute of Applied Physics of the Russian Academy of Sciences (IAP RAS) have been developing the concept of the gyro-TWT based on the use of a waveguide with a helically corrugated surface, which changes the dispersion of one of the eigenmodes in a circular waveguide radically. In this paper, we discuss several problems that arise in implementation of such devices, which many years of experimental studies have revealed, present the parameters of gyro-TWTs developed with allowance for specific applications of their end users, and discuss lines of further perfection of such amplifiers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.V.Gaponov-Grekhov and V. L.Granatstein, Application of High-Power Microwaves, Artech House, Norwood (1994).

    Google Scholar 

  2. M. K. Thumm, Int. J. Infr. Millim. Waves, 22, No. 3, 377 (2001).

    Article  Google Scholar 

  3. R. J.Barker, N.C. Luhmann, J.H.Booske, and G. S.Nusinovich, Modern Microwave and Millimeter-Wave Power Electronics, Wiley-VCH, Hoboken (2005).

    Book  Google Scholar 

  4. M. K. Thumm, State-of-the-Art of High Power Gyro-Devices and Free Electron Masers. Update 2017, KIT Scientific Publishing, Karlsruhe (2018).

  5. A. V. Gaponov, Izv. Vyssh. Uchebn. Zaved., Radiofiz., 2, No. 3, 443 (1959).

    Google Scholar 

  6. R. H. Pantell, Proc. IRE, 47, 1146 (1959).

    Google Scholar 

  7. K. R.Chu, H. Y.Chen, C. L.Hung, et al., Phys. Rev. Lett., 81, 4760 (1998).

    Article  ADS  Google Scholar 

  8. M. Garven, J.P.Calame, B. G. Danly, et al., IEEE Trans. Plasma Sci., 30, 885 (2002).

    Article  ADS  Google Scholar 

  9. D. E. Pershing, K.T.Nguyen, J.P. Calame, et al., IEEE Trans. Plasma Sci., 32, 947 (2004).

    Article  ADS  Google Scholar 

  10. H.Wang, H. Li, Y. Luo, and R.Yan, J. Infr. Millim. Terahertz Waves, 32, No. 2, 172 (2011).

    Article  Google Scholar 

  11. R.Yan, Y. Luo, G. Liu, and Y.Pu, IEEE Trans. Electron Devices, 59, No. 12, 3612 (2012).

    Article  ADS  Google Scholar 

  12. R.Yan, Y.Tang, Y. Luo, IEEE Trans. Electron Devices, 61, No. 7, 2564 (2014).

    Article  Google Scholar 

  13. E.Wang, X. Zeng, B. Liuet, et al., IEEE Trans. Plasma Sci., 40, No. 7, 1846 (2012).

    Article  ADS  Google Scholar 

  14. R.Yan, D.Wang, J.Wanget, et al., IEEE Trans. Electron Devices, 65, No. 7, 3012 (2018).

    Article  ADS  Google Scholar 

  15. M.E. MacDonald, J.P.Anderson, R.K. Lee, et al., Lincoln Laboratory Journal, 21, No. 1, 106 (2014).

    Google Scholar 

  16. M. Blank, P. Borchard, S.Cauffman, and F. Felch, Digest of Joint 32nd Int. Conf. on Infrared and Millim. Waves and 15th Int. Conf. on THz Electronics, 2–9 September 2007, Cardiff, UK, p. 364.

  17. G. G. Denisov and S. J.Cooke, Digest of 21st Int. Conf. on Infrared and Millim. Waves, 4–19 July 1996, Berlin, Germany, p.AT2.

  18. G. G. Denisov, V. L.Bratman, A.D.R.Phelps, and S.V. Samsonov, Digest 22nd Int. Conf. on Infrared and Millim. Waves, 20–25 July 1997, Wintergreen, USA, p. 289.

  19. G. G. Denisov, V. L.Bratman, A.D.R.Phelps, and S.V. Samsonov, IEEE Trans. Plasma Sci., 26, No. 3, 508 (1998).

    Article  ADS  Google Scholar 

  20. G. G. Denisov, V. L.Bratman, A.W.Cross, et al., Phys. Rev. Lett., 81, No. 25, 5680 (1998).

    Article  ADS  Google Scholar 

  21. V. L. Bratman, A. W.Cross, G. G. Denisov, et al., Phys. Rev. Lett., 84, No. 12, 2746 (2000).

    Article  ADS  Google Scholar 

  22. S. V. Samsonov, V. L.Bratman, G.G. Denisov, et al., Proc. 12th Symp. on High Current Electronics, 24–29 September 2000, Tomsk, Russia, p. 403.

  23. V. L. Bratman, G. G. Denisov, S.V. Samsonov, et al., Radiophys. Quantum Electron., 50, No. 2, 95 (2007).

    Article  ADS  Google Scholar 

  24. S. V. Mishakin, S.V. Samsonov, and G.G. Denisov, IEEE Trans. Electron Devices, 62, No. 10, 3387 (2015).

    Article  ADS  Google Scholar 

  25. G. Burt, S.V. Samsonov, K.Ronald, et al., Phys. Rev. E, 70, No. 4, 046402 (2004).

    Article  ADS  Google Scholar 

  26. S. V. Mishakin and S.V. Samsonov, Radiophys. Quantum Electron., 54, No. 3, 174 (2011).

    Article  ADS  Google Scholar 

  27. S. V. Mishakin and S.V. Samsonov, IEEE Trans. Microwave Theory Techniques, 59, No. 9, 2189 (2011).

    Article  ADS  Google Scholar 

  28. C. R. Donaldson, W. He, A.W.Cross, et al., IEEE Trans. Plasma Sci., 37, No. 11, 2153 (2009).

    Article  ADS  Google Scholar 

  29. V. N. Manuilov, S. V. Samsonov, S.V.Mishakin, et al., J. Infrared, Millimeter, Terahertz Waves, 39, No. 5, 447 (2018).

    Article  Google Scholar 

  30. S. V. Samsonov, G.G. Denisov, I.G.Gachev, et al., IEEE Trans. Electron Devices, 59, No. 8, 2250 (2012).

    Article  ADS  Google Scholar 

  31. S. V. Samsonov, I.G.Gachev, G. G. Denisov, et al., Radiotekhnika, No. 4, 104 (2014).

  32. S. V. Samsonov, I.G.Gachev, G. G. Denisov, et al., IEEE Trans. Electron Devices, 61, No. 12, 4264 (2014).

    Article  ADS  Google Scholar 

  33. G. G. Denisov, A.A.Bogdashov, I. G. Gachev, et al., Elektromagnitnye Volny i Elektronnye Sistemy, 20, No. 5, 28 (2015).

    Google Scholar 

  34. CST Particle Studio Overview, https://www.cst.com/Products/CSTPS.

  35. S. V. Samsonov, A.A.Bogdashov, G. G. Denisov, et al., IEEE Trans. Electron Devices, 64, No. 3, 1297 (2017).

    Article  ADS  Google Scholar 

  36. V. L. Bratman, G. G. Denisov, G. I.Kalynova, et al., Proc. 3rd IEEE Int. Vacuum Electronics Conf., IVEC, 23–25 April 2002, Monterey, USA, p. 359.

  37. W. He, C.R.Donaldson, L. Zhang, et al., Phys. Rev. Lett., 119, 184801 (2017).

    Article  ADS  Google Scholar 

  38. V. L. Bratman, A. E. Fedotov, Y.K.Kalynov, et al., IEEE Trans. Plasma Sci., 27, No. 2, 456 (1999).

    Article  ADS  Google Scholar 

  39. V. L. Bratman, Yu.K.Kalynov, V.N.Manuilov, and S.V. Samsonov, Radiophys. Quantum Electron., 48, Nos. 10–11, 73 (2005).

    Google Scholar 

  40. I.V.Bandurkin, V. L.Bratman, Y. K. Kalynov, et al., IEEE Trans. Electron Devices, 2018. V. 65, 2287 (2018).

  41. S. V. Samsonov, G.G. Denisov, I.G.Gachev, et al., EPJ Web of Conferences, 149, 04002 (2017).

    Article  Google Scholar 

  42. S. V. Mishakin, A.A.Bogdashov, G. G. Denisov, et al., Proc. 9th Int. Workshop “Strong Microwaves and Terahertz Waves: Sources and Applications,” 24–30 July 2014, Nizhny Novgorod, Russia, p. 231.

  43. G. G. Denisov, A.A.Bogdashov, I. G. Gachev, et al. Radiophys. Quantum Electron., 58, No. 10, 769 (2015).

    Article  ADS  Google Scholar 

  44. S. V. Samsonov, A.A.Bogdashov, G. G. Denisov, et al., Proc. 18th Int. Vacuum Electronics Conf., 24–26 April 2017, London, UK, Art. no. 8289731.

  45. S. V. Samsonov, A.A.Bogdashov, G. G. Denisov, and I. G. Gachev, Proc. 20th Int. Vacuum Electronics Conf., 9 April–1 May 2019, Busan, Korea, Art. no. 01 1127.

  46. N. S.Ginzburg, I.V. Zotova, A. S. Sergeev, et al., Phys. Plasmas, 22, No. 11, 113111 (2015).

    Article  ADS  Google Scholar 

  47. N. S. Ginzburg, G. G. Denisov, M.N. Vilkov, et al., IEEE Trans. Electron Devices, 65, No. 6, 2334 (2018).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Samsonov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 62, No. 7–8, pp. 508–521, August–September 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samsonov, S.V., Bogdashov, A.A., Gachev, I.G. et al. Studies of a Gyrotron Traveling-Wave Tube with Helically Corrugated Waveguides at IAP Ras: Results and Prospects. Radiophys Quantum El 62, 455–466 (2019). https://doi.org/10.1007/s11141-020-09991-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-020-09991-1

Navigation