Skip to main content
Log in

Crossover of Quasiparticles and Statistics of Bose-Einstein Condensate with Increasing Interaction: from an Ideal Gas to a Thomas-Fermi Regime. The Case of a One-Dimensional Flat Trap

  • Published:
Radiophysics and Quantum Electronics Aims and scope

A change-over of the quasiparticle wave functions and spectrum under a variation in an interparticle interaction in a Bose-Einstein condensed gas of bosons confined in a one-dimensional trap with a flat potential and impermeable walls is studied analytically and numerically. An efficient approximate method of analysis is developed. It yields a solution to the self-consistent Bogoliubov and Gross-Pitaevskii equations for quasiparticles and the condensate that describes a crossover from the regime of a gas of noninteracting bosons to the regime of a gas with the interaction being strong enough to reach a Thomas-Fermi asymptotics. As a result, the characteristic function of the total number of noncondensed particles is found which, for the first time, allows one to figure out how the quantum statistics of fluctuations of the number of particles in the condensate depends on its inhomogeneity and the interparticle interaction in the case of the flat trap. The qualitative features of this dependence as well as a possibility of an experimental observation of the predicted effects in the actual traps are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. D. Landau and E. M. Lifshitz, Statistical Physics, Pt. 1 Butterworth–Heinemann, Oxford (1980).

    Google Scholar 

  2. L. P. Pitaevskii and S. Stringari, Bose–Einstein Condensation, Oxford Univ. Press, Oxford (2003).

    MATH  Google Scholar 

  3. C. J. Pethick and H. Smith, Bose-Einstein Condensation in Dilute Gases, Cambridge University Press, Cambridge (2002).

    Google Scholar 

  4. S. V. Tarasov, Vl. V. Kocharovsky, and V. V. Kocharovsky, J. Stat. Phys., 161, No. 4, 942 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  5. S. A. Gardiner and S. A. Morgan, Phys. Rev. A, 75, No. 4, 043621 (2007).

    Article  ADS  Google Scholar 

  6. T. P. Billam, P. Mason, and S. A. Gardiner, Phys. Rev. A, 87, No. 3, 033628 (2013).

    Article  ADS  Google Scholar 

  7. V. V. Kocharovsky and Vl. V. Kocharovsky, Phys. Scr., 90, No. 10, 108002 (2015).

    Article  ADS  Google Scholar 

  8. V. V. Kocharovsky, Vl. V. Kocharovsky, and M. O. Scully, Phys. Rev. A, 61, No. 5, 053606 (2000).

    Article  ADS  Google Scholar 

  9. V. V. Kocharovsky and Vl. V. Kocharovsky, Phys. Rev. A, 81, No. 3, 033615 (2010).

    Article  ADS  Google Scholar 

  10. S. V. Tarasov, Vl. V. Kocharovsky, and V. V. Kocharovsky, Phys. Rev. A, 90, No. 3, 033605 (2014).

    Article  ADS  Google Scholar 

  11. S. V. Tarasov, Radiophys. Quantum Electron., 59, No. 6, 501 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  12. R. Lopes, C. Eigen, N. Navon, et al., Phys. Rev. Lett., 119, No. 19, 190404 (2017).

    Article  ADS  Google Scholar 

  13. M. A. Kristensen, M. B. Christensen, M. Gajdacz, et al., Phys. Rev. Lett., 122, No. 16, 163601 (2019).

    Article  ADS  Google Scholar 

  14. M. Mehboudi, A. Lampo, C. Charelambous, et al., Phys. Rev. Lett., 122, No. 3, 030403 (2019).

    Article  ADS  Google Scholar 

  15. S. Chatterjee and P. Diaconis, J. Phys. A, 47, No. 8, 085201 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  16. S. Giorgini, L. P. Pitaevskii, and S. Stringari, Phys. Rev. Lett., 80, No. 23, 5040 (1998).

    Article  ADS  Google Scholar 

  17. D. A. W. Hutchinson, E. Zaremba, and A. Griffin, Phys. Rev. Lett., 78, No. 10, 1842 (1997).

    Article  ADS  Google Scholar 

  18. S. J. Garratt, C. Eigen, J. Zhang, et al., Phys. Rev. A, 99, No. 2, 021601 (2019).

    Article  ADS  Google Scholar 

  19. W. Zwerger, Phys. Rev. Lett., 92, No. 2, 027203 (2004).

    Article  ADS  Google Scholar 

  20. Z. Idziaszek, M. Gajda, and K. Rzazewski, Europhys. Lett., 86, No. 1, 10002 (2009).

    Article  ADS  Google Scholar 

  21. H. Shi and A. Griffin, Phys. Rep., 304, Nos. 1–2, 1 (1998).

    Article  ADS  Google Scholar 

  22. A. J. Leggett, Rev. Mod. Phys., 73, No. 2, 307 (2001).

    Article  ADS  Google Scholar 

  23. S. V. Tarasov, Vl. V. Kocharovsky, and V. V. Kocharovsky, Entropy, 20, No. 3, 153 (2018).

    Article  ADS  Google Scholar 

  24. M. Abramowitz and I. A. Steagun, eds., Handbook of Special Functions with Formulas, Graphs, and Tables, Dover, New York (1972).

    MATH  Google Scholar 

  25. B. G. Englert, S. A. Fulling, and M. D. Pilloff, Opt. Commun., 208, Nos. 1–3, 139 (2002).

    Article  ADS  Google Scholar 

  26. R. Lopes, C. Eigen, A. Barker, et al., Phys. Rev. Lett., 118, No. 21, 210401 (2017).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Tarasov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 62, No. 4, pp. 327–347, April 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarasov, S.V., Kocharovsky, V.V. & Kocharovsky, V.V. Crossover of Quasiparticles and Statistics of Bose-Einstein Condensate with Increasing Interaction: from an Ideal Gas to a Thomas-Fermi Regime. The Case of a One-Dimensional Flat Trap. Radiophys Quantum El 62, 293–310 (2019). https://doi.org/10.1007/s11141-019-09978-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-019-09978-7

Navigation