We propose and experimentally test a numerical method for correction of the influence of fluctuations in the distance to objects during noncontact probing in optical coherence tomography. The method is based on the analysis of phase shifts of the neighboring scans, which are due to microscale displacements, and further compensation for these displacements by using phasefrequency correction in the spectral domain. Unlike the known correlation methods, the proposed method does not distort the represented shape of the object surface. Its operability is demonstrated in model experiments in the cases of harmonic and random types of the motion of the scattering object, as well as in vivo imaging of the structures of the human middle ear.
This is a preview of subscription content, access via your institution.
References
- 1.
A. F. Fercher, C.K. Hitzenberger, G. Kamp, et al., Opt. Commun., 117, Nos. 1–2, 43 (1995).
- 2.
V. M. Gelikonov, G.V.Gelikonov, D.A.Terpelov, et al., Instrum. Exp. Tech., 55, No. 3, 392 (2012).
- 3.
H. Rajabi and A. Zirak, Biomed. Phys. Engineering Express, 2, No. 3, 035012 (2016).
- 4.
W. Kang, H. Wang, Z. Wang, et al., Opt. Express, 19, No. 21, 20722 (2011).
- 5.
R. de Kinkelder, J. Kalkman, D. J. Faber, et al., Invest. Ophthalmol. Vis. Sci., 52, No. 6, 3908 (2011).
- 6.
R. J. Zawadzki and D. T. Miller, in: Optical Coherence Tomography: Technology and Applications, Springer, Cham (2015), p. 1849.
- 7.
V. M. Gelikonov, G.V.Gelikonov, and P. A. Shilyagin, Bull. Russ. Acad. Sci. Phys., 72, No. 1, 93 (2008).
- 8.
ANSI Z136.1–2014: American National Standard for Safe Use of Lasers, Laser Inst. Am., Orlando (2014).
- 9.
State Standard IEC 60825-1–2013: Laser Equipment Safety, P. 1. Classification of Equipment, Requirements, and User’s Manual [in Russian], Standartinform, Moscow (2014).
- 10.
O. M.Carrasco-Zevallos, D. Nankivil, C. Viehland, et al., PLOS ONE, 11, No. 8, e0162015 (2016).
- 11.
B. Braaf, K.V. Vienola, C. K. Sheehy, et al., Biomed. Opt. Express, 4, No. 1, 51 (2013).
- 12.
Z. Chen, Y. Shen Y., Bao W., et al., Opt. Express, 25, No. 6, 7069 (2017).
- 13.
M. F. Kraus, B. Potsaid, M. A. Mayer, et al., Biomed. Opt. Express, 3, No. 6, 1182 (2012).
- 14.
A. Montuoro, J. Wu, S. Waldstein, et al., in: Int. Conf. Medical Image Computing and Computer-Assisted Intervention, Springer, Cham (2014), p. 130.
- 15.
A. Camino, M. Zhang, S. S. Gao, et al., Biomed. Opt. Express, 7, No. 10, 3905 (2016).
- 16.
A. Lang, A. Carass, O. Al-Louzi, et al., SPIE Proc., 79784, 97840X (2016).
- 17.
Y. Watanabe, Y. Takahashi, and H. Numazawa, J. Biomed. Opt., 19, No. 2, 021105 (2014).
- 18.
N.D. Shemonski, S. S. Ahn, Y.-Z. Liu, et al., Biomed. Opt. Express, 5, No. 12, 4131 (2014).
- 19.
J. Lee, V. Srinivasan, H. Radhakrishnan, et al., Opt. Express, 19, No. 22, 21258 (2011).
- 20.
Z. Hu and A.M.Rollins, Opt. Lett., 32, No. 24, 3525 (2007).
- 21.
V. M. Gelikonov, G.V.Gelikonov, and P. A. Shilyagin, Opt. Spectrosc., 106, No. 3, 459 (106).
- 22.
P. A. Shilyagin, S. Yu. Ksenofontov, A.A.Moiseev, et al., Radiophys. Quantum Electron., 60, No. 10, 769 (2017).
- 23.
D. A. Terpelov, S. Yu. Ksenofontov, G. V. Gelikonov, et al., Instrum. Exp. Tech., 60, No. 6, 868 (2017).
- 24.
R. A. Leitgeb and M. Wojtkowski, Optical Coherence Tomography: Techology and Applications, Springer, Berlin (2008), p. 177.
- 25.
V. M. Gelikonov, G.V.Gelikonov, I.V.Kasatkina et al., Opt. Spectrosc., 106, No. 6, 895 (2009).
- 26.
J. Ai and L.V.Wang, Opt. Lett., 30, No. 21, 2939 (2005).
- 27.
R. A. Leitgeb, C.K. Hitzenberger, A. F. Fercher, et al., Opt. Lett., 28, No. 22, 2201 (2003).
- 28.
J. Zhang, J. S. Nelson, and Z. Chen, Opt. Lett., 30, No. 2, 147 (2005).
- 29.
V. M. Gelikonov, G.V.Gelikonov, D.A.Terpelov, et al., Quantum Electron., 42, No. 5, 390 (2012).
- 30.
V. A. Matkivsky, A. A. Moiseev, S.Y.Ksenofontov, et al., Frontiers Optoelectron., 10, No. 3, 323 (2017).
- 31.
G. V. Gelikonov and V.M.Gelikonov, Radiophys. Quantum Electron., 61, No. 2, 135 (2018).
- 32.
P. A. Shilyagin, G. V. Gelikonov, V.M.Gelikonov, et al., Quantum Electron., 44, No. 7, 664 (2014).
- 33.
P. A. Shilyagin, L. A. Matveev, E.B.Kiseleva, et al., Sovrem. Tekhnol. Med., 11, No. 2, 25 (2019).
- 34.
G. S. Gorelik, Oscillations and Waves [in Russian], Fizmatlit, Moscow (1959).
- 35.
A. Moiseev, S. Ksenofontov, M. Sirotkina, et al., J. Biophoton., 11, No. 10, e201700292 (2018).
- 36.
L. A. Matveev, V.Y. Zaitsev, G.V.Gelikonov, et al., Opt. Lett., 40, No. 7, 1472 (2015).
- 37.
V. Y. Zaitsev, A. L. Matveev, L.A.Matveev, et al., J. Biomed. Opt., 20, No. 7, 075006 (2015).
- 38.
S. N. Bagayev, V. M. Gelikonov, G.V.Gelikonov, et al., J. Biomed. Opt., 7, No. 4, 633 (2002).
- 39.
L. Huo, J. Xi, Y. Wu, et al., Opt. Express, 18, No. 14, 14375 (2010).
- 40.
S. Moon, S.-W. Lee, M. Rubinstein, et al., Opt. Express, 18, No. 20, 21183 (2010).
- 41.
H.-C. Park, Y.-H. Seo, K.-H. Jeong, Opt. Express, 22, No. 5, 5818 (2014).
- 42.
Y. Chen, Y.-J. Hong, S. Makita, et al., Biomed. Opt. Express, 8, No. 3, 1783 (2017).
- 43.
Y. Chen, Y.-J. Hong, S. Makita, et al., Biomed. Opt. Express, 9, No. 3, 1111 (2018).
- 44.
B. C. Chauhan, K. T. Stevens, J.M. Levesque, et al., PLOS ONE, 7, No. 6, e40352 (2012).
- 45.
G. Taibbi, G. C. Peterson, M. F. Syed, et al., Invest. Ophthalmol. Vis. Sci., 55, No. 4, 2251 (2014).
- 46.
H. G. Bezerra, M. A. Costa, G. Guagliumi, et al., Clinical Res. Appl., 2, No. 11, 1035 (2009).
- 47.
S. Yu. Ksenofontov and T. V. Vasilenkova, “Way for optimizing the maximum intensity projection method for visualization of scalar three-dimensional data in the static regime, interactive regime, and real time,” Russian Federation Patent No. 2533055, Bull. No. 32 (2013).
Author information
Affiliations
Corresponding author
Additional information
Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 62, No. 3, pp. 252–262, March 2019.
Rights and permissions
About this article
Cite this article
Gelikonov, G.V., Ksenofontov, S.Y., Shilyagin, P.A. et al. Compensation for the Influence of Fluctuations in the Distance to the Object During Noncontact Probing in Spectral Domain Optical Coherence Tomography. Radiophys Quantum El 62, 228–236 (2019). https://doi.org/10.1007/s11141-019-09971-0
Received:
Accepted:
Published:
Issue Date: