Compensation for the Influence of Fluctuations in the Distance to the Object During Noncontact Probing in Spectral Domain Optical Coherence Tomography

We propose and experimentally test a numerical method for correction of the influence of fluctuations in the distance to objects during noncontact probing in optical coherence tomography. The method is based on the analysis of phase shifts of the neighboring scans, which are due to microscale displacements, and further compensation for these displacements by using phasefrequency correction in the spectral domain. Unlike the known correlation methods, the proposed method does not distort the represented shape of the object surface. Its operability is demonstrated in model experiments in the cases of harmonic and random types of the motion of the scattering object, as well as in vivo imaging of the structures of the human middle ear.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    A. F. Fercher, C.K. Hitzenberger, G. Kamp, et al., Opt. Commun., 117, Nos. 1–2, 43 (1995).

    ADS  Article  Google Scholar 

  2. 2.

    V. M. Gelikonov, G.V.Gelikonov, D.A.Terpelov, et al., Instrum. Exp. Tech., 55, No. 3, 392 (2012).

    Article  Google Scholar 

  3. 3.

    H. Rajabi and A. Zirak, Biomed. Phys. Engineering Express, 2, No. 3, 035012 (2016).

    Article  Google Scholar 

  4. 4.

    W. Kang, H. Wang, Z. Wang, et al., Opt. Express, 19, No. 21, 20722 (2011).

    ADS  Article  Google Scholar 

  5. 5.

    R. de Kinkelder, J. Kalkman, D. J. Faber, et al., Invest. Ophthalmol. Vis. Sci., 52, No. 6, 3908 (2011).

    Article  Google Scholar 

  6. 6.

    R. J. Zawadzki and D. T. Miller, in: Optical Coherence Tomography: Technology and Applications, Springer, Cham (2015), p. 1849.

    Google Scholar 

  7. 7.

    V. M. Gelikonov, G.V.Gelikonov, and P. A. Shilyagin, Bull. Russ. Acad. Sci. Phys., 72, No. 1, 93 (2008).

    Google Scholar 

  8. 8.

    ANSI Z136.1–2014: American National Standard for Safe Use of Lasers, Laser Inst. Am., Orlando (2014).

  9. 9.

    State Standard IEC 60825-1–2013: Laser Equipment Safety, P. 1. Classification of Equipment, Requirements, and User’s Manual [in Russian], Standartinform, Moscow (2014).

  10. 10.

    O. M.Carrasco-Zevallos, D. Nankivil, C. Viehland, et al., PLOS ONE, 11, No. 8, e0162015 (2016).

    Article  Google Scholar 

  11. 11.

    B. Braaf, K.V. Vienola, C. K. Sheehy, et al., Biomed. Opt. Express, 4, No. 1, 51 (2013).

    Article  Google Scholar 

  12. 12.

    Z. Chen, Y. Shen Y., Bao W., et al., Opt. Express, 25, No. 6, 7069 (2017).

  13. 13.

    M. F. Kraus, B. Potsaid, M. A. Mayer, et al., Biomed. Opt. Express, 3, No. 6, 1182 (2012).

    Article  Google Scholar 

  14. 14.

    A. Montuoro, J. Wu, S. Waldstein, et al., in: Int. Conf. Medical Image Computing and Computer-Assisted Intervention, Springer, Cham (2014), p. 130.

  15. 15.

    A. Camino, M. Zhang, S. S. Gao, et al., Biomed. Opt. Express, 7, No. 10, 3905 (2016).

    Article  Google Scholar 

  16. 16.

    A. Lang, A. Carass, O. Al-Louzi, et al., SPIE Proc., 79784, 97840X (2016).

    Google Scholar 

  17. 17.

    Y. Watanabe, Y. Takahashi, and H. Numazawa, J. Biomed. Opt., 19, No. 2, 021105 (2014).

    ADS  Article  Google Scholar 

  18. 18.

    N.D. Shemonski, S. S. Ahn, Y.-Z. Liu, et al., Biomed. Opt. Express, 5, No. 12, 4131 (2014).

    Article  Google Scholar 

  19. 19.

    J. Lee, V. Srinivasan, H. Radhakrishnan, et al., Opt. Express, 19, No. 22, 21258 (2011).

    ADS  Article  Google Scholar 

  20. 20.

    Z. Hu and A.M.Rollins, Opt. Lett., 32, No. 24, 3525 (2007).

    ADS  Article  Google Scholar 

  21. 21.

    V. M. Gelikonov, G.V.Gelikonov, and P. A. Shilyagin, Opt. Spectrosc., 106, No. 3, 459 (106).

  22. 22.

    P. A. Shilyagin, S. Yu. Ksenofontov, A.A.Moiseev, et al., Radiophys. Quantum Electron., 60, No. 10, 769 (2017).

    ADS  Article  Google Scholar 

  23. 23.

    D. A. Terpelov, S. Yu. Ksenofontov, G. V. Gelikonov, et al., Instrum. Exp. Tech., 60, No. 6, 868 (2017).

    Article  Google Scholar 

  24. 24.

    R. A. Leitgeb and M. Wojtkowski, Optical Coherence Tomography: Techology and Applications, Springer, Berlin (2008), p. 177.

    Google Scholar 

  25. 25.

    V. M. Gelikonov, G.V.Gelikonov, I.V.Kasatkina et al., Opt. Spectrosc., 106, No. 6, 895 (2009).

    ADS  Article  Google Scholar 

  26. 26.

    J. Ai and L.V.Wang, Opt. Lett., 30, No. 21, 2939 (2005).

    ADS  Article  Google Scholar 

  27. 27.

    R. A. Leitgeb, C.K. Hitzenberger, A. F. Fercher, et al., Opt. Lett., 28, No. 22, 2201 (2003).

    ADS  Article  Google Scholar 

  28. 28.

    J. Zhang, J. S. Nelson, and Z. Chen, Opt. Lett., 30, No. 2, 147 (2005).

    ADS  Article  Google Scholar 

  29. 29.

    V. M. Gelikonov, G.V.Gelikonov, D.A.Terpelov, et al., Quantum Electron., 42, No. 5, 390 (2012).

    ADS  Article  Google Scholar 

  30. 30.

    V. A. Matkivsky, A. A. Moiseev, S.Y.Ksenofontov, et al., Frontiers Optoelectron., 10, No. 3, 323 (2017).

    Article  Google Scholar 

  31. 31.

    G. V. Gelikonov and V.M.Gelikonov, Radiophys. Quantum Electron., 61, No. 2, 135 (2018).

    ADS  Article  Google Scholar 

  32. 32.

    P. A. Shilyagin, G. V. Gelikonov, V.M.Gelikonov, et al., Quantum Electron., 44, No. 7, 664 (2014).

    ADS  Article  Google Scholar 

  33. 33.

    P. A. Shilyagin, L. A. Matveev, E.B.Kiseleva, et al., Sovrem. Tekhnol. Med., 11, No. 2, 25 (2019).

    Article  Google Scholar 

  34. 34.

    G. S. Gorelik, Oscillations and Waves [in Russian], Fizmatlit, Moscow (1959).

  35. 35.

    A. Moiseev, S. Ksenofontov, M. Sirotkina, et al., J. Biophoton., 11, No. 10, e201700292 (2018).

    Article  Google Scholar 

  36. 36.

    L. A. Matveev, V.Y. Zaitsev, G.V.Gelikonov, et al., Opt. Lett., 40, No. 7, 1472 (2015).

    ADS  Article  Google Scholar 

  37. 37.

    V. Y. Zaitsev, A. L. Matveev, L.A.Matveev, et al., J. Biomed. Opt., 20, No. 7, 075006 (2015).

    ADS  Article  Google Scholar 

  38. 38.

    S. N. Bagayev, V. M. Gelikonov, G.V.Gelikonov, et al., J. Biomed. Opt., 7, No. 4, 633 (2002).

    ADS  Article  Google Scholar 

  39. 39.

    L. Huo, J. Xi, Y. Wu, et al., Opt. Express, 18, No. 14, 14375 (2010).

    ADS  Article  Google Scholar 

  40. 40.

    S. Moon, S.-W. Lee, M. Rubinstein, et al., Opt. Express, 18, No. 20, 21183 (2010).

    ADS  Article  Google Scholar 

  41. 41.

    H.-C. Park, Y.-H. Seo, K.-H. Jeong, Opt. Express, 22, No. 5, 5818 (2014).

    ADS  Article  Google Scholar 

  42. 42.

    Y. Chen, Y.-J. Hong, S. Makita, et al., Biomed. Opt. Express, 8, No. 3, 1783 (2017).

    Article  Google Scholar 

  43. 43.

    Y. Chen, Y.-J. Hong, S. Makita, et al., Biomed. Opt. Express, 9, No. 3, 1111 (2018).

    Article  Google Scholar 

  44. 44.

    B. C. Chauhan, K. T. Stevens, J.M. Levesque, et al., PLOS ONE, 7, No. 6, e40352 (2012).

    ADS  Article  Google Scholar 

  45. 45.

    G. Taibbi, G. C. Peterson, M. F. Syed, et al., Invest. Ophthalmol. Vis. Sci., 55, No. 4, 2251 (2014).

    Article  Google Scholar 

  46. 46.

    H. G. Bezerra, M. A. Costa, G. Guagliumi, et al., Clinical Res. Appl., 2, No. 11, 1035 (2009).

    Google Scholar 

  47. 47.

    S. Yu. Ksenofontov and T. V. Vasilenkova, “Way for optimizing the maximum intensity projection method for visualization of scalar three-dimensional data in the static regime, interactive regime, and real time,” Russian Federation Patent No. 2533055, Bull. No. 32 (2013).

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to G. V. Gelikonov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 62, No. 3, pp. 252–262, March 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gelikonov, G.V., Ksenofontov, S.Y., Shilyagin, P.A. et al. Compensation for the Influence of Fluctuations in the Distance to the Object During Noncontact Probing in Spectral Domain Optical Coherence Tomography. Radiophys Quantum El 62, 228–236 (2019). https://doi.org/10.1007/s11141-019-09971-0

Download citation