Skip to main content
Log in

Experimental Demonstration of the Possibility to Expand the Band of Smooth Tuning of Frequency Generation in Short-Cavity Gyrotrons

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We show experimentally the possibility to expand significantly the band of smooth tuning of the generation frequency in gyrotrons using cavities that have shorter lengths. Due to a decrease in the sensitivity of the electron-wave interaction process to the spread in the electron beam velocities, one can increase the power of generation at higher longitudinal modes up to a level comparable with the radiation power in the case of excitation of a mode with one longitudinal variation. In this case, overlapping of generation bands at the neighboring longitudinal modes is achieved by increasing the current of the electron beam. In the experiment performed in a gyrotron having an operating frequency of about 12 GHz, we demonstrated a frequency tuning band which exceeded 4% at the kilowatt level of the output radiation power in its greater part. The obtained results open up the possibility of developing tunable high-frequency moderate-power gyrotrons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Darbos, F. Albajar, T. Bonicelli, et al., J. Infrared, Millim. THz Waves, 37, 1, 4 (2016).

  2. S. S. Dhillon, M. S. Vitiello, E. H. Linfield, et al., J. Phys. D: Appl. Phys., 50, 4, 043001 (2017).

    Article  ADS  Google Scholar 

  3. A. Miyazaki, T. Yamazaki, T. Suehara, et al., J. Infrared, Millim. THz Waves, 35, 1, 91 (2014).

  4. M. A. Koshelev, A. I. Tsvetkov, M. V. Morozkin, et al., J. Molec. Spectr., 331, 9 (2007).

    Article  ADS  Google Scholar 

  5. T. H. Chang, T. Idehara, I. Ogawa, et al., J. Appl. Phys., 105, 6, 063304 (2009).

    Article  ADS  Google Scholar 

  6. A. C. Torrezan, S.-T. Han, I. Mastovsky, et al., IEEE Trans. Plasma Sci., 38, 6, 1150 (2010).

    Article  ADS  Google Scholar 

  7. A. B. Barnes, E. A. Nanni, J. Hertzfeld, et al., J. Magn. Resonance, 221, 147 (2012).

    Article  ADS  Google Scholar 

  8. J. Zhao, G. S. Nusinovich, H. Guo, et al., IEEE Trans. Plasma Sci., 28, 3, 597 (2000).

    Article  ADS  Google Scholar 

  9. V. L. Bratman, N. S. Ginzburg, G. S. Nusinovich, et al., Int. J. Electron., 51, No. 4, 541 (1981).

    Article  Google Scholar 

  10. M. I. Petelin, in: Gyrotron [in Russian], Inst. Appl. Phys., Gorky (1981), p. 5.

  11. A. E. Fedotov, R. M. Rozental, I. V. Zotova, et al., J. Infrared, Millimeter, and THz Waves, 39, 10, 975 (2018).

  12. Yu. Bykov, A. Eremeev, M. Glyavin, et al., IEEE Trans. Plasma Sci., 32, 1, 67 (2004).

    Article  ADS  Google Scholar 

  13. G. S. Nusinovich and R. E. Érm, Elektron. Tekhn., Ser. I, Electron. SVCh, No. 8, 55 (1972).

  14. V. L. Bratman, M. A. Moiseev, M. I. Petelin, and R. É. Érm, Radiophys. Quantum Electron., 16, No. 4, 474 (1973).

    Article  ADS  Google Scholar 

  15. A. V. Gaponov, V. A. Flyagin, A. L. Gol’denberg, et al., Int. J. Electron., 51, 4, 277 (1981).

    Article  Google Scholar 

  16. V. P. Tarakanov, EPJ Web of Conferences, 149, 04024 (2017).

    Article  Google Scholar 

  17. A. C. Torrezan, M. A. Shapiro, J. R. Sirigiri, et al., IEEE Trans. Electron. Dev., 58, 8, 2777 (2011).

    Article  ADS  Google Scholar 

  18. X.-B. Qi, C.-H. Du, S. Pan, et al., IEEE Trans. Electron. Dev., 64, No. 2, 527 (2017).

    Article  ADS  Google Scholar 

  19. V. E. Zapevalov, G. S. Korablyov, and Sh. E. Tsimring, Radiotekh. Élektron., 22, No. 8, 1661 (1977).

    ADS  Google Scholar 

  20. G. Yu. Golubyatnikov, A. F. Krupnov, L. V. Lubyako, et al., Tech. Phys. Lett., 32, No. 18, 650 (2006).

    Article  ADS  Google Scholar 

  21. A. Fokin, M. Glyavin, G. Golubiatnikov, et al., Scientific Reports, 8, 4317 (2018).

    Article  ADS  Google Scholar 

  22. A. A. Bogdashov, M. Yu. Glyavin, R. M. Rozental’, et al., Tech. Phys. Lett., 44, No. 3, 221 (2018).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Rozental.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 61, No. 11, pp. 895–89, November 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glyavin, M.Y., Fedotov, A.E., Zotova, I.V. et al. Experimental Demonstration of the Possibility to Expand the Band of Smooth Tuning of Frequency Generation in Short-Cavity Gyrotrons. Radiophys Quantum El 61, 797–800 (2019). https://doi.org/10.1007/s11141-019-09937-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-019-09937-2

Navigation