Advertisement

Radiophysics and Quantum Electronics

, Volume 61, Issue 10, pp 705–721 | Cite as

Bremsstrahlung at Low-Energy Electron–Nucleus Collisions in the Quantizing Magnetic Field. I. Distant Collisions

  • S. A. KoryaginEmail author
Article
  • 9 Downloads

We analytically calculate the spectral power of bremsstrahlung from a slow electron colliding with motionless nuclei in a strong quantizing magnetic field, in which the energy of the Coulomb interaction between particles at a distance of the order of the Larmor radius exceeds the mechanical energy of the system in absolute value. In this case, the electron motion becomes quasibound in sufficiently close collisions. In this part of research, we consider bremsstrahlung at low frequencies, which is stipulated by distant flybys without quasibound motion: an electron can spread over many Landau levels as a result of the collision, but keeps the direction of its motion along the magnetic field. We prove that the transition from the classical to quantum cyclotron gyration of an electron does not manifest itself in the spectral emission power of the waves with arbitrary polarization at the considered frequencies. This property stems from the fact that the low-frequency emission is due to the longitudinal motion and electric drift in the crossed Coulomb and magnetic fields which remain quasiclassical. Thus, we confirm that the bleaching of the photosphere of a magnetic white dwarf, which was discovered in the classical consideration with respect to collisional absorption of the extraordinary wave (polarized across the external magnetic field), is also preserved in the quantum limit—for stars of this spectral type with the strongest magnetic field.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Ferrario, D. de Martino, and B.T.Gänsicke, Space Sci. Rev., 191, 111 (2015).Google Scholar
  2. 2.
    M.Amoretti, C.Amsler, G. Bonomi, et al., Nature, 419, 456 (2002).ADSCrossRefGoogle Scholar
  3. 3.
    G. Gabrielse, N. S. Bowden, P. Oxley, et al., Phys. Rev. Lett ., 89, No. 21, 213401 (2002).ADSCrossRefGoogle Scholar
  4. 4.
    L. I. Menshikov and R. Landua, Phys. Usp., 46, No. 3, 227 (2003).ADSCrossRefGoogle Scholar
  5. 5.
    S. A. Koryagin, Radiophys. Quantum Electron., 51, No. 6, 462 (2008).ADSCrossRefGoogle Scholar
  6. 6.
    B. M. Askerov, Electron Transport Phenomena in Semiconductors, World Scietific, Singapore (1994).CrossRefGoogle Scholar
  7. 7.
    V. F. Gantmakher and I. B. Levinson, Carrier Scattering in Metals and Semiconductors, Elsevier Science Publishers, B.V. (1987).Google Scholar
  8. 8.
    I. V. Dakhovsky, Fiz. Tverd. Tela [in Russian], 5, No. 8, 2332 (1963).Google Scholar
  9. 9.
    J. Ventura, Phys. Rev. C, 8, No. 6, 3021 (1973).ADSCrossRefGoogle Scholar
  10. 10.
    G. G. Pavlov and D. G. Yakovlev, Sov. Phys. JETP, 43, No. 3, 389 (1976).ADSGoogle Scholar
  11. 11.
    G. G. Pavlov and A. N. Panov, Sov. Phys. JETP, 44, No. 2, 300 (1976).ADSGoogle Scholar
  12. 12.
    V. E. Golant, A. P. Zhilinsky, and I. E. Sakharov, Fundamentals of plasma physics Wiley, New York (1980).Google Scholar
  13. 13.
    L. P. Pitaevskii and E. M. Lifshitz, Physical Kinetics, Butterworth–Heinemann (2012).Google Scholar
  14. 14.
    V. F. Elesin, Phys. Usp., 48, No. 2, 183 (2005).ADSCrossRefGoogle Scholar
  15. 15.
    S. S. Murzin, Phys. Usp., 43, No. 4, 349 (2000).ADSCrossRefGoogle Scholar
  16. 16.
    V. V. Zaitsev and A. V. Stepanov, Solar Phys., 139, No. 2, 343 (1992).ADSCrossRefGoogle Scholar
  17. 17.
    A. A. Kruglov, Radiophys. Quantum Electron., 54, No. 1, 24 (2011).ADSCrossRefGoogle Scholar
  18. 18.
    V.P. Silin, Introduction to the Kinetic Theory of Gases [in Russian], URSS, Moscow (2013).Google Scholar
  19. 19.
    I. I. Bubukina and S. A. Koryagin, J. Exp. Theor. Phys., 108, No. 6, 917 (2009).ADSCrossRefGoogle Scholar
  20. 20.
    S. A. Koryagin, Radiophys. Quantum Electron., 56, No. 10, 664 (2014).ADSCrossRefGoogle Scholar
  21. 21.
    L. D. Landau and E. M. Lifshitz, The classical thory of fields, Butterworth–Heinemann (1980).Google Scholar
  22. 22.
    J. B. Delos, S. K. Knudson, and D. W. Noid, Phys. Rev. C, 30, 1208 (1984).ADSCrossRefGoogle Scholar
  23. 23.
    S. A. Arsenyev and S. A. Koryagin, Radiophys. Quantum Electron., 53, No. 11, 650 (2010).ADSCrossRefGoogle Scholar
  24. 24.
    R. Gajewski, Physica, 47, 575 (1970).ADSCrossRefGoogle Scholar
  25. 25.
    V. V. Zheleznyakov, S. A. Koryagin, and A.V. Serber, Astron. Lett ., 25, No. 7, 437 (1999).ADSGoogle Scholar
  26. 26.
    V. V. Zheleznyakov, Radiation in Astrophysical Plasmas [in Russian], Yanus-K, Moscow (1997).Google Scholar
  27. 27.
    S. C. West, Astrophys. J ., 345, 511 (1989).ADSCrossRefGoogle Scholar
  28. 28.
    G. G. Pavlov and Yu. A. Shibanov, Sov. Astron.., 22, No. 2, 214 (1978).ADSGoogle Scholar
  29. 29.
    S. A. Koryagin and I. A. Balandin, Radiophys. Quantum Electron., 60, No. 3, 171 (2017).ADSCrossRefGoogle Scholar
  30. 30.
    S. A. Koryagin, J. Exp. Theor. Phys., 90, No. 5, 741 (2000).ADSCrossRefGoogle Scholar
  31. 31.
    L. D. Landau and E. M. Lifshits, Quantum Mechanics: Nonrelativistic Theory, Pergamon, Oxford (1991).Google Scholar
  32. 32.
    M. H. Johnson and B. A. Lippmann, Phys. Rev., 76, 828 (1949).ADSCrossRefGoogle Scholar
  33. 33.
    A. A. Sokolov and I. M. Ternov, Radiation from Relativistic Electrons, Amer. Inst. Phys., New York (1986).Google Scholar
  34. 34.
    M. Abramowitz and I. Stegun, ed., Handbook of Special Functions with Formulas, Graphs, and Mathematical Tables, U.S. National Bureau of Standards (1972).Google Scholar
  35. 35.
    A. Messiah, Quantum Mechanics, Dover Publ., New York (2014).zbMATHGoogle Scholar
  36. 36.
    L. A. Vainshtein, Electromagnetic Waves [in Russian], Radio i Svyaz’, Moscow (1988).Google Scholar
  37. 37.
    R. P. Feynman, Phys. Rev., 84, 108 (1951).ADSCrossRefGoogle Scholar
  38. 38.
    J. Schwinger, Phys. Rev., 91, 728 (1953).ADSCrossRefGoogle Scholar
  39. 39.
    A. M. Perelomov, Generalized coherent states and their applications, Springer, Berlin (1986).CrossRefzbMATHGoogle Scholar
  40. 40.
    V. B. Berestetskii, L. P. Pitaevskii, and E. M. Lifshitz, Quantum Electrodynamics, Butterworth–Heinemann, Oxford (2008).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Applied Physics, Russian Academy of SciencesNizhny NovgorodRussia
  2. 2.N. I. Lobachevsky State University of Nizhny NovgorodNizhny NovgorodRussia

Personalised recommendations