Experimental Observation of the Self-Oscillatory Dynamics of the Regulation Contours of the Cardiovascular System

In this work, we experimentally study the heart rate variability, photoplethysmograms, and electroencephalograms of healthy subjects in the course of active experiments with respiration, whose rate varied according to a known law. On the basis of the experimentally measured signals of the heart rate variability, photoplethysmograms, and electroencephalograms, it is shown that the low-frequency regulation processes with frequencies below 1 Hz interact with each other and are significantly influenced by the respiration process. The obtained results are indicative of the presence of several vegetative-regulation centers whose activity is manifested in the low-frequency dynamics of the signals of the heart rate variability, photoplethysmograms, and electroencephalograms.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    A. Guyton and J. Hall, Textbook of Medical Physiology, 12th Edition, Saunders Elsevier, Philadelphia (2006).

    Google Scholar 

  2. 2.

    Yu. M. Romanovsky, N. V. Stepanova, and D. S. Chernavsky, Mathematical Simulation in Biophysics [in Russian], Space Research Institute, Moscow (2003).

    Google Scholar 

  3. 3.

    “Heart rate variability,” in: Circulation, 93, 1043 (1996).

  4. 4.

    K. K. Jain, Med. Principl. Pract., 26, No. 5, 399 (2017).

    ADS  Article  Google Scholar 

  5. 5.

    E. Björnson, J. Borön, and A. Mardinoglu, Frontiers Physiol., 7, No. 2, 1 (2016).

    Google Scholar 

  6. 6.

    E. H. Hon and S. T. Lee, Am. J. Obstet. Gynecol., 15, No. 87, 814 (1963).

    Google Scholar 

  7. 7.

    V. I. Ponomarenko, M. D. Prokhorov, A. S. Karavaev, et al., Eur. Phys. J. Spec. Topics, 222, No. 10, 2687 (2013).

    ADS  Article  Google Scholar 

  8. 8.

    A. S. Karavaev, A. E. Runnova, E. I. Borovkova, et al., Saratov Nauchn. Med. Zh., 12, No. 4, 541 (2016).

    Google Scholar 

  9. 9.

    A. S. Karavaev, M. D. Prokhorov, V. I. Ponomarenko, et al., Chaos, 19, No. 3, 033112 (2009).

    ADS  Article  Google Scholar 

  10. 10.

    A. A. Koronovskii, A.E. Hramov, V. I. Ponomarenko, and M. D. Prokhorov, Phys. Rev. E, 75, No. 5, 056207 (2007).

    ADS  Article  Google Scholar 

  11. 11.

    A. R. Kiselev, V. I. Gridnev, M. D. Prokhorov, et al., Anatol. J. Cardiol., 14, No. 8, 701 (2014).

    Article  Google Scholar 

  12. 12.

    A. R. Kiselev, V. I. Gridnev, M. D. Prokhorov, et al., J. Cardiovasc. Med., 13, No. 8, 491 (2012).

    Article  Google Scholar 

  13. 13.

    N. A. Aladjalova, Nature, 179, No. 4567, 957 (1957).

    ADS  Article  Google Scholar 

  14. 14.

    G. G. Knyazev, Neurosci. Biobehav. Rev., 36, No. 1, 677 (2012).

    Article  Google Scholar 

  15. 15.

    L. Bernardi, A. Radaelli, P. L. Solda, et al., Clin. Sci., 90, No. 5, 345 (1996).

    Article  Google Scholar 

  16. 16.

    C. Julien, Cardiovasc. Res., 70, No. 1, 12 (2006).

    Article  Google Scholar 

  17. 17.

    R. M. Baevsky, G. G. Ivanov, L. V. Chireikin, et al., Vest. Aritmol., 24, 65 (2001).

    Google Scholar 

  18. 18.

    R. M. Baevsky, Klinich. Informat. Telemed., 1, No. 1, 54 (2004).

    Google Scholar 

  19. 19.

    A. A. Koronovskii and A. E. Hramov, Continuous Wavelet Analysis and its Applications [in Russian], Fizmatlit, Moscow (2003).

    Google Scholar 

  20. 20.

    Q. Quiroga, A. Kraskov, T. Kreuz, and P. Grassberger, Phys. Rev. E, 65, No. 4, 041903 (2002).

    ADS  Article  Google Scholar 

  21. 21.

    T. Schreiber and A. Schmitz, Phys. Rev. Lett., 77, No. 4, 635 (1996).

    ADS  Article  Google Scholar 

  22. 22.

    F. Mormann, K. Lehnertz, P. David, and C. E. Elger, Physica D, 144, Nos. 3–4, 358 (2000).

    ADS  Article  Google Scholar 

  23. 23.

    J. Brea, D. F. Russell, and A. B. Neiman, Chaos, 16, No. 2, 026111 (2006).

    ADS  Article  Google Scholar 

  24. 24.

    C. Schafer, M. G. Rosenblum, H. H. Abel, and J. Kurths, Phys. Rev. E, 60, No. 1, 857 (1999).

    ADS  Article  Google Scholar 

  25. 25.

    J. T. Ottesen, Math. Comp. Model., 31, Nos. 4–5, 167 (2000).

    Article  Google Scholar 

  26. 26.

    M. Ursino, Am. J. Physiol., 275, No. 5, H1733 (1998).

    Google Scholar 

  27. 27.

    R. W. de Boer, J. M. Karemaker, and J. Strackee, Am. J. Physiol., 253, No. 3, H680 (1987).

    Google Scholar 

  28. 28.

    A. S. Karavaev, J. M. Ishbulatov, V. I. Ponomarenko, et al., J. Am. Soc. Hypertens., 10, No. 3, 235 (2016).

    Article  Google Scholar 

  29. 29.

    B. C. Lacey and J. I. Lacey, Am. Psychol., 33, 99 (1978).

    Article  Google Scholar 

  30. 30.

    M. Lambertz and P. Langhorst, J. Auton. Nerv. Syst., 68, Nos. 1–2, 58 (1998).

    Article  Google Scholar 

  31. 31.

    R. Vandenhouten, M. Lambertz, P. Langhorst, and R. Grebe, IEEE Trans. Biomed. Eng., 47, No. 6, 729 (2000).

    Article  Google Scholar 

  32. 32.

    A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: a Universal Concept in Nonlinear Sciences, Cambridge Univ. Press, New York (2001).

    Book  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. S. Karavaev.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 61, No. 8–9, pp. 764–772, August–September 2018.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Karavaev, A.S., Borovkova, E.I., Runnova, A.E. et al. Experimental Observation of the Self-Oscillatory Dynamics of the Regulation Contours of the Cardiovascular System. Radiophys Quantum El 61, 681–688 (2019). https://doi.org/10.1007/s11141-019-09928-3

Download citation