Advertisement

Radiophysics and Quantum Electronics

, Volume 61, Issue 8–9, pp 659–671 | Cite as

Chimera Structures in the Ensembles of Nonlocally Coupled Chaotic Oscillators

  • V. S. AnishchenkoEmail author
  • G. I. Strelkova
Article
  • 22 Downloads

We study the structure and properties of the chimera states in the ensembles of chaotic oscillators with nonlocal coupling. It is shown that the phase and amplitude chimera states in the ensembles of chaotic oscillators with nonhyperbolic and hyperbolic attractors can be obtained using the models in the forms of two-dimensional Hénon and Lozi maps. The mechanisms of birth, the structure, and the lifetime of the phase and amplitude chimeras and the regime of solitary states are studied. The chimera states in two coupled ensembles of chaotic maps are considered. The possibility of realizing a new type of the chimera structure, namely, the chimera consisting of the solitary states is demonstrated. The effects of the external and mutual synchronizations of the chimera states are described by an example of two coupled ensembles of logistic maps with nonlocal coupling. A qualitative analogy of the obtained results with the classical effect of synchronization of periodic self-sustained oscillations is discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. S. Afraimovich, V. I. Nekorkin, G. V. Osipov, and V. D. Shalfeev, Stability, Structures and Chaos in Nonlinear Synchronization Networks, World Scientific, Singapore (1995).CrossRefzbMATHGoogle Scholar
  2. 2.
    G. V. Osipov, J. Kurths, and Ch. Zhou, Synchronization in Oscillatory Networks, Springer, Berlin (2007).CrossRefzbMATHGoogle Scholar
  3. 3.
    Y. Kuramoto and D. Battogtokh, Nonlinear Phenom. Complex Syst., 5, No. 4, 380 (2002).Google Scholar
  4. 4.
    D. M. Abrams and S. H. Strogatz, Phys. Rev. Lett., 93, No. 17, 174102 (2004).ADSCrossRefGoogle Scholar
  5. 5.
    M. J. Panaggio and D. M. Abrams, Nonlinearity, 28, R67 (2015).ADSCrossRefGoogle Scholar
  6. 6.
    D. M. Abrams, R. E. Mirollo, S. H. Strogatz, and D. A. Wiley, Phys. Rev. Lett., 101, 084103 (2008).ADSCrossRefGoogle Scholar
  7. 7.
    C.R. Laing, Phys. Rev. E, 81, 066221 (2010).ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    E. A. Martens, C. R. Laing, and S. H. Strogatz, Phys. Rev. Lett., 104, 044101 (2010).ADSCrossRefGoogle Scholar
  9. 9.
    A. E. Motter, Nat. Phys., 6, 164 (2010).CrossRefGoogle Scholar
  10. 10.
    M. Wolfrum and O. E. Omel’chenko, Phys. Rev. E, 84, 015201 (2011).ADSCrossRefGoogle Scholar
  11. 11.
    I. Omelchenko, Y. Maistrenko, P. Hövel, and E. Schöll, Phys. Rev. Lett., 106, 234102 (2011).ADSCrossRefGoogle Scholar
  12. 12.
    I. Omelchenko, B. Riemenschneider, P. Hövel, Y. Maistrenko, and E. Schöll, Phys. Rev. E, 85, 026212 (2012).ADSCrossRefGoogle Scholar
  13. 13.
    Y. Maistrenko, A. Vasylenko, O. Sudakov, et al., Int. J. Bifurc. Chaos, 24, 1440014 (2014).CrossRefGoogle Scholar
  14. 14.
    A. Zakharova, M. Kapeller, and E. Schöll, Phys. Rev. Lett., 112, 154101 (2014).ADSCrossRefGoogle Scholar
  15. 15.
    A. Yeldesbay, A. Pikovsky, and M. Rosenblum, Phys. Rev. Lett., 112, 144103 (2014).ADSCrossRefGoogle Scholar
  16. 16.
    D. Dudkowski, Y. Maistrenko, and T. Kapitaniak, Phys. Rev. E, 90, 032920 (2014).ADSCrossRefGoogle Scholar
  17. 17.
    N. Semenova, A. Zakharova, E. Schöll, and V. Anishchenko, Europhys. Lett., 112, 40002 (2015).ADSCrossRefGoogle Scholar
  18. 18.
    S. Olmi, E. A. Martens, S. Thutupalli, and A. Torcini, Phys. Rev. E, 92, 030901(R) (2015).ADSCrossRefGoogle Scholar
  19. 19.
    J. Hizanidis, E. Panagakou, I. Omelchenko, et. al., Phys. Rev. E, 92, 012915 (2015).ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    T. E. Vadivasova, G. I. Strelkova, S. A. Bogomolov, and V. S. Anishchenko, Chaos, 26, 093108 (2016).ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    F. P. Kemeth, S. W. Haugland, L. Schmidt, et al., Chaos, 26, 094815 (2016).ADSCrossRefGoogle Scholar
  22. 22.
    S. Ulonska, I. Omelchenko, A. Zakharova, and E. Schöll, Chaos, 26, 094825 (2016).ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    N. I. Semenova, A. Zakharova, V. Anishchenko, and E. Schöll, Phys. Rev. Lett., 117, 01410 (2016).CrossRefGoogle Scholar
  24. 24.
    E. Schöll, Eur. Phys. J. Spec. Top., 225, 891 (2016).CrossRefGoogle Scholar
  25. 25.
    V. Semenov, A. Zakharova, Y. Maistrenko, and E. Schöll, Europhys. Lett., 115, 10005 (2016).ADSCrossRefGoogle Scholar
  26. 26.
    J. Sawicki, I. Omelchenko, A. Zakharova, and E. Schöll, Eur. Phys. J. Spec. Top., 226, 1883 (2017).CrossRefGoogle Scholar
  27. 27.
    E. Rybalova, N. Semenova, G. Strelkova, and V. Anishchenko, Eur. Phys. J. Spec. Top., 226, 1857 (2017).CrossRefGoogle Scholar
  28. 28.
    N. I. Semenova, G. I. Strelkova, V. S. Anishchenko, and A. Zakharova, Chaos, 27, 061102 (2017).ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    S. A. Bogomolov, A.V. Slepnev, G. I. Strelkova, et al., Commun. Nonlinear Sci. Numer. Simul., 43, 25 (2017).ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    M. S. Santos, J. D. Szezezh Jr., A. M. Batista, et al., Phys. Lett. A, 379, 2188 (2015).ADSCrossRefGoogle Scholar
  31. 31.
    A. Zakharova, N. Semenova, V. Anishchenko, and E. Schöll, Chaos, 27, 114320 (2017).ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    I. A. Shepelev, A. V. Bukh, T. E. Vadivasova, et al., Commun. Nonlinear Sci. Numer. Simul., 54, 50 (2018).ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    A. M. Hagerstrom, T. E. Murphy, R. Roy, et al., Nat. Phys., 8, 658 (2012).CrossRefGoogle Scholar
  34. 34.
    M. R. Tinsley, S. Nkomo, and K. Showalter, Nat. Phys., 8, 662 (2012).CrossRefGoogle Scholar
  35. 35.
    L. Larger, B. Penkovsky, and Y. L. Maistrenko, Phys. Rev. Lett., 111, 054103 (2013).ADSCrossRefGoogle Scholar
  36. 36.
    E. A. Martens, S. Thutupalli, A. Fourriere, and O. Hallatschek, Proc. Natl. Acad. Sci. USA, 110, 10563 (2013).ADSCrossRefGoogle Scholar
  37. 37.
    T. Kapitaniak, P. Kuzma, J. Wojewoda, et al., Sci. Rep., 4, 6379 (2014).CrossRefGoogle Scholar
  38. 38.
    L. Larger, B. Penkovsky, and Y. Maistrenko, Nat. Commun., 6, 7752 (2015).ADSCrossRefGoogle Scholar
  39. 39.
    S. A. Bogomolov, G. I. Strelkovva, E. Schöll, and V. S. Anishchenko, Tech. Phys. Lett., 42, No. 7, 765 (2016).ADSCrossRefGoogle Scholar
  40. 40.
    S. Watanabe, S. H. Strogatz, H. S. J. van der Zant, and T. P. Orlando, Phys. Rev. Lett., 74, 379 (1995).ADSCrossRefGoogle Scholar
  41. 41.
    R. D. Li and T. Erneux, Phys. Rev. A, 49, 1301 (1993).ADSCrossRefGoogle Scholar
  42. 42.
    J. Hizanidis, N. E. Kouvaris, G. Zamora-López, et al., Sci. Rep., 6, 19845 (2016).ADSCrossRefGoogle Scholar
  43. 43.
    N. C. Rattenborg, C. J. Amlaner, and S. L. Lima, Neurosci. Biobehav. Rev., 24, 817 (2000).CrossRefGoogle Scholar
  44. 44.
    A. E. Motter, S. A. Myers, M. Anghel, and T. Nishikawa, Nat. Phys., 9, 191 (2013).CrossRefGoogle Scholar
  45. 45.
    T. Nishikawa and A. E. Motter, New J. Phys., 17, 015012 (2015).ADSCrossRefGoogle Scholar
  46. 46.
    N. I. Semenova, E. V. Rybalova, G. I. Strelkova, and V. S. Anishchenko, Reg. Chaot. Dyn., 22, 148 (2017).CrossRefGoogle Scholar
  47. 47.
    V. S. Anishchenko, Complex Oscillations in Simple Systems [in Russian], Nauka, Moscow (1990).Google Scholar
  48. 48.
    T. E. Vadivasova, G. I. Strelkova, S. A. Bogomolov, and V. S. Anishchenko, Tekh. Phys. Lett., 43, No. 1, 118 (2017).CrossRefGoogle Scholar
  49. 49.
    V. Dziubak, Y. Maistrenko, and E. Schöll, Phys. Rev. E, 87, 032907 (2013).ADSCrossRefGoogle Scholar
  50. 50.
    A. Bukh, N. Semenova, E. Rybalova, et al., Chaos, 27, 111102 (2017).ADSMathSciNetCrossRefGoogle Scholar
  51. 51.
    A. V. Bukh, G. I. Strelkova, and V. S. Anishchenko, arXiv, 1802.02771v1 (2018).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.N. G. Chernyshevsky Saratov National Research State UniversitySaratovRussia

Personalised recommendations