Skip to main content
Log in

Evaluation of the Atmospheric Minor Species Measurements: a Priori Statistical Constraints Based on Photochemical Modeling

  • Published:
Radiophysics and Quantum Electronics Aims and scope

The paper discusses the features of the previously published method of the Bayesian statistical evaluation of simultaneous satellite measurements of the minor species OH, HO2, and O3 at the mesospheric altitudes. These features are due to the introduction of a priori constraints on true concentration values (masked by measurement noise), which are determined by the condition of photochemical equilibrium of the species. The method is based on the probabilistic view of the satellite measurement process where the true concentrations of OH, HO2, and O3 are considered as random variables. In such a technique, we construct the a posteriori probability density of these variables and compare its statistical characteristics with the initial measurement data. It is shown that there is ambiguity in the construction of the a posteriori probability density of OH, HO2, and O3, which is due to the different ways of limiting transition from the three-dimensional probability distribution to the surface one. The ambiguity significantly affects the statistical means and leads to an inevitable systematic error. We present the main options for choosing the probability density, depending on the type of the transition. To estimate the systematic error, we tested the method by using artificial noisy model data on OH, HO2, and O3 that simulate perfect (unbiased) measurements. It is shown that choosing a patch transition leads to the least systematic error. Applying the method to MLS/Aura data of July 2005 confirmed the conclusion made earlier that the satellite measurements of the HO2 concentration have a significant bias greatly exceeding the systematic error of the method. This leads, in particular, to a significant error in the localization of the concentration maximum of this component at the mesospheric altitudes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Chameides, J. Geophys. Res., 80, No. 36, 4989 (1975).

    Article  ADS  Google Scholar 

  2. D. H. Stedman, W. Chameides, and J. O. Jackson, Geophys. Res. Lett ., 2, No. 1, 22 (1975).

    Article  ADS  Google Scholar 

  3. N. Sobanski, M. J. Tang, J. Thieser, et al., Atmos. Chem. Phys., 16, 4867 (2016).

    Article  ADS  Google Scholar 

  4. J. A. Pyle, A. M. Zavody, J. E. Harries, and P. H. Moffat, Nature, 305, 690 (1983).

    Article  ADS  Google Scholar 

  5. G. Wetzel, H. Oelhaf, O. Kirner, et al., Atmos. Chem. Phys., 12, 6581 (2012).

    Article  ADS  Google Scholar 

  6. M. Marchand, S. Bekki, F. Lefevre, and A. Hauchecorne, Geophys. Res. Lett ., 34, L24809 (2007).

    Article  ADS  Google Scholar 

  7. W. F. J. Evans and E. J. Llewellyn, J. Geophys. Res., 78, 323 (1973).

    Article  ADS  Google Scholar 

  8. M. G. Mlynczak, L. A. Hunt, B. T. Marshall, et al., J. Geophys. Res., 119, 3516 (2014).

    Google Scholar 

  9. A. K. Smith, D. R. Marsh, M. G. Mlynczak, and J. C. Mast, J. Geophys. Res., 115, D18309 (2010).

    Article  ADS  Google Scholar 

  10. D. E. Siskind, D. R. Marsh, M. G. Mlynczak, et al., Geophys. Res. Lett ., 35, L13809 (2008).

    Article  ADS  Google Scholar 

  11. A. R. Douglass, C. H. Jackman, and R. S. Stolarski, J. Geophys. Res., 94, No. D7, 9862 (1989).

    Article  ADS  Google Scholar 

  12. P. J. Rasch, B. A. Boville, and G. P. Brasseur, J. Geophys. Res., 100, No. D5, 9041 (1995).

    Article  ADS  Google Scholar 

  13. P. Tulet, A. Grini, R. J. Griffin, and S. Petitcol, J. Geophys. Res., 111, D23208 (2006).

    Article  ADS  Google Scholar 

  14. M. Y. Kulikov, A. A. Nechaev, M. V. Belikovich, et al., Atmos. Chem. Phys., 18, 7453 (2018).

    Article  ADS  Google Scholar 

  15. L. Millán, S. Wang, N. Livesey, et al., Atmos. Chem. Phys., 15, 2889 (2015).

    Article  ADS  Google Scholar 

  16. W. Lee, H. Kanamori, P. Jennings, and C. Kisslinge, Intern. Handbook of Earthquake & Engineering Seismology, Part A, Vol. 81A, Academic Press, Cambridge, Massachusetts (2003).

    Google Scholar 

  17. http://www.ipgp.fr/tarantola/Files/Professional/Papers PDF/InverseProblemHandbk.pdf .

  18. G. Sonnemann, C. Kremp, A. Ebel, and U. Berger, Atmos. Environ., 32, 3157 (1998).

    Article  ADS  Google Scholar 

  19. J. de Grandpre, S. R. Beagley, V. I. Fomichev, et al., J. Geophys. Res. Atmos., 105, 26475 (2000).

    Article  ADS  Google Scholar 

  20. J. F. Scinocca, N. A. McFarlane, M. Lazare, et al., Atmos. Chem. Phys., 8, 7055 (2008).

    Article  ADS  Google Scholar 

  21. U. Körner and G. R. Sonnemann, J. Geophys. Res. Atmos., 106, 9639 (2001).

    Article  ADS  Google Scholar 

  22. M. Grygalashvyly, G. R. Sonnemann, and P. Hartogh, Atmos. Chem. Phys., 9, 2779 (2009).

    Article  ADS  Google Scholar 

  23. M. Grygalashvyly, E. Becker, and G. R. Sonnemann, J. Geophys. Res., 116, D18302 (2011).

    Article  ADS  Google Scholar 

  24. M. Grygalashvyly, E. Becker, and G. R. Sonnemann, Space Sci. Rev., 168, 333 (2012).

    Article  ADS  Google Scholar 

  25. P. Hartogh, C. Jarchow, G. R. Sonnemann, and M. Grygalashvyly, J. Geophys. Res., 109, D18303 (2004).

    Article  ADS  Google Scholar 

  26. P. Hartogh, G. R. Sonnemann, M. Grygalashvyly, and Ch. Jarchow, Adv. Space Res., 47, 1937 (2011).

    Article  ADS  Google Scholar 

  27. G. R. Sonnemann, M. Grygalashvyly, P. Hartogh, and C. Jarchow, Adv. Space Res., 38, 2402 (2006).

    Article  ADS  Google Scholar 

  28. G. R. Sonnemann, P. Hartogh, C. Jarchow, et al., Adv. Space Res., 40, 846 (2007).

    Article  ADS  Google Scholar 

  29. M. Y. Kulikov, M. V. Belikovich, M. Grygalashvyly, et al., Ann. Geophys., 35, 677 (2017).

    Article  ADS  Google Scholar 

  30. M. V. Belikovich, M. Y. Kulikov, M. Grygalashvyly, et al., Adv. Space Res., 61, No. 1, 426 (2018).

    Article  ADS  Google Scholar 

  31. M. Yu. Kulikov, M. V. Belikovich, N. Grygalashvyly, et al., J. Geophys. Res. Atmos., 123, No. 6, 3228 (2018).

    Article  ADS  Google Scholar 

  32. J. B. Burkholder, S. P. Sander, J. Abbatt, et al., Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 18, JPL Publication 15-10, Jet Propulsion Laboratory, Pasadena (2015).

    Google Scholar 

  33. M. Yu. Kulikov, D. N. Mukhin, and A. M. Feigin, Radiophys. Quantum Electron., 52, No. 9, 616 (2009).

    Article  ADS  Google Scholar 

  34. A. A. Nechaevm T. S. Ermakova, and M. Yu. Kulikov, Radiophys. Quantum Electron., 59, No. 7, 546 (2016).

    Article  ADS  Google Scholar 

  35. C. D. Rodgers, Inverse Methods for Atmospheric Sounding: Theory and Practice, World Scientific Publishing Co., Sigapore (2000).

    Book  MATH  Google Scholar 

  36. S. Chib and E. Greenberg, Understanding the Metropolis-Hastings Algorithm, The American Statistician, 49, No. 4, 327 (1995).

    Google Scholar 

  37. https://en.wikipedia.org/wiki/Borel%E2%80%93Kolmogorov paradox .

  38. S. Wang, H. Pickett, N. Livesey, and W. Read, MLS/Aura Level 2 Hydroperoxy (HO 2 ) Mixing Ratio V004, Goddard Earth Sciences Data and Information Services Center, Greenbelt (2015), doi:https://doi.org/10.5067/AURA/MLS/DATA2013.

    Google Scholar 

  39. S. Wang, N. Livesey, and W. Read MLS/Aura Level 2 Hydroxyl (OH) Mixing Ratio V004, Goddard Earth Sciences Data and Information Services Center, Greenbelt (2015), doi:https://doi.org/10.5067/AURA/MLS/DATA2018.

    Google Scholar 

  40. M. Schwartz, L. Froidevaux, N. Livesey, and W. Read, MLS/Aura Level 2 Ozone (O 3 ) Mixing Ratio V004, Goddard Earth Sciences Data and Information Services Center, Greenbelt (2015), doi:https://doi.org/10.5067/AURA/MLS/DATA2017.

    Google Scholar 

  41. S. Solomon, D. W. Rusch, R. J. Thomas, and R. S. Eckman, Geophys. Res. Lett ., 10, 249 (1983).

    Article  ADS  Google Scholar 

  42. M. E. Summers, R. R. Conway, D. E. Siskind, et al., Science, 277, 1967 (1997).

    Article  Google Scholar 

  43. D. E. Siskind, M. H. Stevens, C. R. Englert, and M. G. Mlynczak, J. Geophys. Res. Atmos., 118, 195 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Belikovich.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 61, No. 8–9, pp. 645–661, August–September 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belikovich, M.V., Kulikov, M.Y., Nechaev, A.A. et al. Evaluation of the Atmospheric Minor Species Measurements: a Priori Statistical Constraints Based on Photochemical Modeling. Radiophys Quantum El 61, 574–588 (2019). https://doi.org/10.1007/s11141-019-09918-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-019-09918-5

Navigation