Advertisement

Radiophysics and Quantum Electronics

, Volume 61, Issue 8–9, pp 553–562 | Cite as

Hydrodynamic Dispersion for Fluid Filtration Through a Porous Medium with Random Macroscopic Inhomogeneities

  • B. S. MaryshevEmail author
  • D. S. Goldobin
Article
  • 12 Downloads

We study the convective diffusion of passive admixtures in the course of forced fluid filtration through a porous medium with frozen random inhomogeneities of macroscopic parameters. During the fluid filtration, the parameter inhomogeneities lead to spatially irregular flows and are responsible for dispersion of the fluid particles, which causes convective diffusion that is additional to molecular diffusion. In contrast to the molecular diffusion, this diffusion is anisotropic and directly proportional to the filtration flow velocity. We consider the inhomogeneities of both permeability and porosity of the medium and report on analytical results for the most common options of their statistical properties. It was assumed that the inhomogeneities are relatively small and their autocorrelation function decays with the distance r not slower than 1/rβ, where β > 1. Direct numerical simulation for different cases confirmed the validity of the restrictions we adopted and the correctness of the analytical findings.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. E. Collins, Flow of Fluids through Porous Materials, Reinhold, New York (1961).Google Scholar
  2. 2.
    M. Sahimi, Rev. Mod. Phys., 65, 1393 (1993).ADSCrossRefGoogle Scholar
  3. 3.
    D. U. von Rosenberg, J. AIChE, 2, 55 (1956).CrossRefGoogle Scholar
  4. 4.
    P. G. Saffman, J. Fluid Mech., 6, 321 (1959).ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    P. G. Saffman, J. Fluid Mech., 7, 194 (1960).ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    G. Dagan, Water Resour. Res., 22, No. 9S, 120S (1986).ADSCrossRefGoogle Scholar
  7. 7.
    G. Dagan, Annu. Rev. Fluid Mech., 19, 183 (1987).ADSCrossRefGoogle Scholar
  8. 8.
    D. R. F. Harleman and D. R. F. Rumer, J. Fluid Mech., 16, 38 (1963).CrossRefGoogle Scholar
  9. 9.
    P. G. Saffman and G. Taylor, Proc. Roy. Soc. Lond. A, 245, 312 (1958).ADSCrossRefGoogle Scholar
  10. 10.
    D. V. Lyubimov, S. Shklyaev, T. P. Lyubimova, and O. Zikanov, Phys. Fluids, 21, 014105 (2009).ADSCrossRefGoogle Scholar
  11. 11.
    M. K. Davie and B. A. Buffett, J. Geophys. Res., 106, 497 (2001).ADSCrossRefGoogle Scholar
  12. 12.
    D. S. Goldobin and N. V. Brilliantov, Phys. Rev. E, 84, 056328 (2011).ADSCrossRefGoogle Scholar
  13. 13.
    S. J. Hunter, D. S. Goldobin, A. M. Haywood, et al., Earth Planet. Sci. Lett ., 367, 105 (2013).ADSCrossRefGoogle Scholar
  14. 14.
    D. S. Goldobin and P. V. Krauzin, Phys. Rev. E, 92, 063032 (2015).ADSCrossRefGoogle Scholar
  15. 15.
    S. Holloway, Energy Conversion and Management, 38, S193 (1997).CrossRefGoogle Scholar
  16. 16.
    Japan’s Methane Hydrate R&D Program. Phase 1: Comprehensive Report of Research Results, August 2008 Edition, JOGMEC, Tokyo (2008).Google Scholar
  17. 17.
    Y. A. Buyevich, A. T. Leonov, and V. M. Safrai, J. Fluid Mech., 37, 371 (1969).ADSCrossRefGoogle Scholar
  18. 18.
    L. W. Gelhar, A. L. Gutjahr, and J. Naff, Water Resour. Res., 15, 1387 (1979).ADSCrossRefGoogle Scholar
  19. 19.
    L. W. Gelhar and C. L. Axness, Water Resour. Res., 19, 161 (1983).ADSCrossRefGoogle Scholar
  20. 20.
    S. P. Neuman, C. L. Winter, and C. M. Newman, Water Resour. Res., 23, 453 (1987).ADSCrossRefGoogle Scholar
  21. 21.
    S. P. Neuman and Y. Zhang, Water Resour. Res., 23, 887 (1990).ADSGoogle Scholar
  22. 22.
    G. Dagan, J. Fluid Mech., 233, 197 (1991).ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    Cushman J. H. Water Resour. Res., 19, 1641 (1983).ADSCrossRefGoogle Scholar
  24. 24.
    L. W. Gelhar and C. L. Axness, Water Resour. Res., 19, 1643 (1983).ADSCrossRefGoogle Scholar
  25. 25.
    G. Dagan, Water Resour. Res., 24, 1491 (1988).ADSCrossRefGoogle Scholar
  26. 26.
    L. W. Gelhar, Water Resour. Res., 22, 135S (1986).CrossRefGoogle Scholar
  27. 27.
    T. M. Müller and B. Gurevich, J. Acoust. Soc. Am., 117, 2732 (2005).ADSCrossRefGoogle Scholar
  28. 28.
    G. Mavko, T. Mukerji, and J. Dvorkin, The Rock Physics Handbook. Tools for Seismic Analysis in Porous Media, 2nd ed., Cambridge University Press, Cambridge (2009).CrossRefGoogle Scholar
  29. 29.
    A. N. Kolmogorov, Dokl. Akad. Nauk SSSR, 31, No. 2, 99 (1941).Google Scholar
  30. 30.
    B. Maryshev, M. Joelson, D. Lyubimov, et al., J. Phys. A: Math. Theor., 42, 115001 (2009).ADSCrossRefGoogle Scholar
  31. 31.
    C. W. Gardiner, Handbook of Stochastic Methods, Springer-Verlag, Berlin (1997).zbMATHGoogle Scholar
  32. 32.
    J. Nocedal and S. J. Wright, Numerical Optimization, Springer-Verlag, New York (2006).zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute for Solid State Mechanics of the Ural Branch of the Russian Academy of SciencesPermRussia

Personalised recommendations