Skip to main content
Log in

Resonant Interaction of Relativistic Electrons with Electromagnetic Ion–Cyclotron Waves. II. Integral Parameters of Interaction Regimes

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We analyze the integral parameters of resonant interaction of relativistic electrons in the Earth’s radiation belts with electromagnetic ion–cyclotron waves. The analysis is based on numerical simulations. Wave packets of finite length with varying frequency and various amplitude profiles propagating from the equator are considered. The roles of three nonlinear interaction regimes, analyzed in the first part of our paper [1] for single particle trajectories, are compared. It is shown that interaction characteristics depend stronger on the electron energy and wave packet position for the wave packet with Gaussian amplitude profile than for the wave packet with constant amplitude. For the wave packet with Gaussian amplitude profile, the directed and diffusive transfer of particles in the phase space are comparable, while for the wave packet with constant amplitude the mean change in the equatorial pitch angle can be considerably (a factor of 3 to 5) greater than the standard deviation. The most significant decrease in the equatorial pitch angle and the largest fraction of the corresponding particles are obtained for particles with energies of about 1 MeV for the wave packet close to the equator. The fraction of particles which can be scattered into the loss cone after a single pass through the wave packet is 1.0–1.7%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. S. Grach and A. G. Demekhov, Radiophys. Quantum Electron., 60, No. 12, 942 (2017).

    Article  ADS  Google Scholar 

  2. B. J. Anderson and D. C. Hamilton, J. Geophys. Res., 98, No. A7, 11369 (1993).

    Article  ADS  Google Scholar 

  3. B. J. Fraser and T. S. Nguyen, J. Atmosph. Solar-Terr. Phys., 63, 1225 (2001).

    Article  ADS  Google Scholar 

  4. T.M. Loto’aniu, B. J. Fraser, and C. L. Waters, J. Geophys. Res., 110, A07214 (2005).

    ADS  Google Scholar 

  5. M.E. Usanova, I. R. Mann, K. Bortnik, et al., J. Geophys. Res., 117, No. A10, A10218 (2012).

    Article  ADS  Google Scholar 

  6. K. Keika, K. Takahashi, A. Y. Ukhorskiy, and Y. Miyoshi, J. Geophys. Res., 118, No. 7, 4135 (2013).

    Article  Google Scholar 

  7. J. Kangas, A. Guglielmi, and O. Pokhotelov, Space Sci. Rev., 83, 435 (1998).

    Article  ADS  Google Scholar 

  8. M. J. Engebretson, A. Keiling, K.-H. Fornacon, et al., Planetary Space Sci ., 55, 829 (2007).

    Article  ADS  Google Scholar 

  9. M. J. Engebretson, J. L. Posch, A. M. Westerman, et al., J. Geophys. Res., 113, No. A7, A07206 (2008).

    Article  ADS  Google Scholar 

  10. J. S. Pickett, B. Grison, Y. Omura, et al., Geophys. Res. Lett ., 37, L09104 (2010).

    Article  ADS  Google Scholar 

  11. K. Mursula, J. Atmosph. Solar-Terr. Phys., 69, 1623 (2007).

    Article  ADS  Google Scholar 

  12. M. J. Engebretson, J. L. Posch, J.R.Wygant, et al., J. Geophys. Res., 120, 5465 (2015).

    Article  Google Scholar 

  13. R. M. Thorne and C. F. Kennel, J. Geophys. Res., 76, No. 19, 4446 (1971).

    Article  ADS  Google Scholar 

  14. V. I. Karpman, Y. N. Istomin, and D. R. Shklyar, Plasma Phys., 16, No. 8, 685 (1974).

    Article  ADS  Google Scholar 

  15. J. M. Albert, Phys. Fluids B, 5, 2744 (1993).

    Article  ADS  Google Scholar 

  16. J. M. Albert, J. Geophys. Res., 105, 21 (2000).

    Article  Google Scholar 

  17. J. M. Albert and J. Bortnik, Geophys. Res. Lett ., 36, No. 12, L12110 (2009).

    Article  ADS  Google Scholar 

  18. A. G. Demekhov, V. Yu. Trakhtengerts, M. Rycroft, and D. Nunn, Geomagn. Aeron., 46, No. 6, 711 (2006).

    Article  ADS  Google Scholar 

  19. Y. Kubota and Y. Omura, J. Geophys. Res., 122, No. 1, 293 (2017).

    Article  Google Scholar 

  20. Y. Omura and Q. Zhao, J. Geophys. Res., 117, No. A8, A08227 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Grach.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 61, No. 6, pp. 441–455, June 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grach, V.S., Demekhov, A.G. Resonant Interaction of Relativistic Electrons with Electromagnetic Ion–Cyclotron Waves. II. Integral Parameters of Interaction Regimes. Radiophys Quantum El 61, 389–401 (2018). https://doi.org/10.1007/s11141-018-9900-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-018-9900-9

Navigation