Skip to main content
Log in

A Nonlinear Relaxation Mechanism of the Filtering Noise Generation in Porous Media

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We propose a model that explains the microscopic origin of the nonstationarity and related filtering noise generation in porous media. The noise is not determined by hydrodynamic sources, and the transition to a turbulent flow regime in pores is not required for its occurrence. The physical mechanism of a nonstationary flow is connected with the development of instability at contacts inside cracks or grains, as well as with the presence of relaxation phenomena in voids and channels always available in rocks. It has been shown that the structural elements in rocks provide a self-excited oscillation regime. The proposed model is in good agreement with known experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. A. Nikolaev and M. N. Ovchinnikov, Akust. Zh., 38, No. 1, 114 (1992).

    Google Scholar 

  2. A. I. Ipatov, A.V. Gorodnov, L.P. Petrov, et al., AIS Karotazhnik, No. 122, 51 (2004).

  3. A. I. Ipatov, A.V. Gorodnov, S. I. Ipatov, et al., Geofizika, 2, 25 (2004).

    Google Scholar 

  4. V.N. Shchelkachev and B.B. Lapuk, Underground Hydraulics [in Russian], State Scientific and Technical Publishing of Oil and Rock–Fuel Literature, Moscow (1949).

    Google Scholar 

  5. G. I. Barenblatt, V. M. Entov, and V.M. Ryzhik, Motion of Liquids and Gases in Natural Layers [in Russian], Nedra, Moscow (1984).

    Google Scholar 

  6. G. Mavko, T. Mukeji, and J. Dvorkin, The Rock Physics Handbook. Tools For Seismic Analysis in Porous Media, Cambridge University Press, Boston, MA (2009).

    Book  Google Scholar 

  7. A. I. Ipatov and N. I. Kremenetsky, Geophysical and Hydrodynamic Control of the Hydrocarbon Fields Development [in Russian], I. M.Gubkin Russian State University of Oil and Gas, Research Center “Regular and Chaotic Dynamics,” Moscow (2010).

  8. L.D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. VI. Fluid Mechanics, Pergamon, New York (1987).

    Google Scholar 

  9. M.N. Ovchinnikov, “Rheological models and evolution of physical fields in the underwater hydrosphere” [in Russian], D. Sc. thesis (phys. & math.), Kazan University (2004).

  10. E. A. Marfin, I. S. Metelev, B. A. Garif’yanov, and A.A. Abdrashitov, Uchenye Zapiski Fiz. Fakult. Mosk. Univ ., No. 6, 146316 (2014).

  11. Yu.M. Zaslavsky, Electronic journal “Tech. Acoustics,” http://www.ejta.org, 5 (2005).

  12. A. Kh. Mirzadzhanzade, M.M. Khasanov, and R.N. Bakhtizin, Modeling of Iol Exploration Processes: Nonlinearity, Non-equilibrium, and Uncertainty [in Russian], Computer Research Institute of Izhevsk, Moscow (2004).

    Google Scholar 

  13. M. I. Rabinovich and D. I. Trubetskov, Introduction to the Theory of Oscillations and Waves [in Russian], Nauka, Moscow (2001).

    Google Scholar 

  14. K. L. Johnson, Contact Mechanics, Cambridge Univ. Press (1985).

  15. R.A. Guyer and R.A. Johnson, Nonlinear Mesoscopic Elasticity: The Complex Behaviour of Rocks, Soil, Concrete, Wiley-VCH, Weinheim (2009).

    Book  Google Scholar 

  16. W. F. Brace, E. Silver, K. Hadley, and C. Goetze, Science, 178, No. 4057, 162 (1972).

    Article  ADS  Google Scholar 

  17. R. L. Kranz, Tectonophys., 100, Nos. 1–3, 449 (1983).

    Article  Google Scholar 

  18. A. V. Lebedev and L. A. Ostrovsky, Acoust. Phys., 60, No. 5, 555 (2014).

    Article  ADS  Google Scholar 

  19. J. Dvorkin and A. Nur, Geophys., 58, No. 4, 524 (1993).

    Article  Google Scholar 

  20. J. Dvorkin, R. Nolen-Hoeksema, and A. Nur, Geophys., 59, No. 3, 428 (1994).

    Article  Google Scholar 

  21. M. A. Biot, J. Acoust. Soc. Am., 28, No. 2, 168 (1956).

    Article  ADS  Google Scholar 

  22. M. Sahimi, Applications of Percolation Theory, Taylor and Francis, London (1994).

    Google Scholar 

  23. M. Klaman and O.D. Lavrentovich, Soft Matter: An Introduction (Partially Ordered Media), Springer-Verlag, New York (2003).

    Google Scholar 

  24. A. A. Androvov, A.A. Vitt, and S.E. Khaikin, Theory of Oscillations, Pergamon Press, Oxford (1966).

    Google Scholar 

  25. A. D. Polyanin and A.V. Manzhirov, Handbook of Integral Equations, CRC Press, Boca Raton (1998).

    Book  Google Scholar 

  26. M. A. Isakovich, General Acoustics [in Russian], Nauka, Mosocw (1973).

    Google Scholar 

  27. D. Maugis and M. Barquins, J. Phys. D: Appl. Phys., 11, No. 14, 1989 (1978).

    Article  ADS  Google Scholar 

  28. B. V. Deryagin, N. V. Churaev, and V.M. Muller, Surface Forces [in Russian], Nauka, Moscow (1985).

    Google Scholar 

  29. K. Kendall, in: D.A. Dillard and A.V. Pocius (eds.), Energy Analysis of Adhesion, Vol. 1, The Mechanics of Adhesion, Elsevier, Amsterdam (2002), p. 77.

    Google Scholar 

  30. E. Bonnet, O. Bour, N.E. Odling, et al., Rev. Geophys., 39, No. 3, 347 (2001).

    Article  ADS  Google Scholar 

  31. I. K. Kikoin, Reference Book of Physical Quantities [in Russian], Atomizdat, Moscow (1976).

    Google Scholar 

  32. J. J. Zhang and L.R. Bentley, CREWES Res. Report, 15, 1 (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Lebedev.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 61, No. 4, pp. 343–357, April 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lebedev, A.V. A Nonlinear Relaxation Mechanism of the Filtering Noise Generation in Porous Media. Radiophys Quantum El 61, 305–317 (2018). https://doi.org/10.1007/s11141-018-9892-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-018-9892-5

Navigation