Skip to main content
Log in

High-Temperature Measurements of the Microwave Absoprtion Coefficient in Ceramic and Composite Materials

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We measure the microwave absorption coefficient in ceramic and composite materials in a wide temperature range. The measurement method is based on comparing the intensities of the electromagnetic radiation in the working chamber of a gyrotron facility in the presence and absence of a specimen in it. It is shown that if the dielectric constants of components of the composite materials are known, one can determine the dependence of the dielectric loss tangent on the temperature of the material. We obtain the temperature dependences of the dielectric loss tangent at a frequency of 24 GHz for alumina ceramics with the Al2O3 content exceeding 99.5% in the temperature range 200–1100°C and for the Al2O3–ZrO2 composite with the Al2O, ZrO2, and Y2O3 contents equal to 88%, 11%, and 1%, respectively, in the temperature range 200–600°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. M. Hutcheon, M. S. de Jong, F.P. Adams, et al., Mater. Res. Soc. Symp. Proc., 269, 541 (1992).

    Article  Google Scholar 

  2. W. W. Ho, Mater. Res. Soc. Symp. Proc., 124, 137 (1988).

    Article  Google Scholar 

  3. V.V. Parshin, B.M. Garin, S.E. Myasnikova, and A.V. Orlenekov, Radiophys. Quantum Electron., 47, No. 12, 974 (2004).

    Article  ADS  Google Scholar 

  4. Yu. Bykov, A. Eremeev, M. Glyavin, et al., IEEE Trans. Plasma Sci., 32, 67 (2004).

    Article  ADS  Google Scholar 

  5. R. Vila, M.Gonzalez, J. Molla, and A. Ibarra, J. Nucl. Mater., 253, 141 (1998).

    Article  ADS  Google Scholar 

  6. G.E. Becker and S. H. Autler, Phys. Rev., 70, 300 (1946).

    Article  ADS  Google Scholar 

  7. E. Lamb Jr., Phys. Rev., 70, 308 (1946).

    Article  ADS  Google Scholar 

  8. H. D.Kimrey and M.A. Janney, Mater. Res. Soc. Symp. Proc., 124, 367 (1988).

    Article  Google Scholar 

  9. L. A. Weinstein, Electromagnetic Waves [in Russian], Radio i Svyaz’, Moscow (1988).

    Google Scholar 

  10. D. J. Bergman and D. Stroud, Solid State Phys., 46, 155 (1992).

    Google Scholar 

  11. J. Molla, R. Heidinger, A. Ibarra, and G. Link, “Dielectric properties of alumina/zirconia composites at millimeter wavelengths”, Preprint CEIMAT-736. Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, Madrid (1994).

    Google Scholar 

  12. A. R. von Hippel, ed., Dielectric Materials and Applications, Artech House, Boston (1995).

    Google Scholar 

  13. F. Kremer and J.R. Izatt, Int. J. Infrared Millimeter Waves, 2, No. 4, 675 (1981).

    Article  ADS  Google Scholar 

  14. J.R. Izatt and F. Kremer, Appl. Opt., 20, No. 14, 2555 (1981).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Volkovskaya.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 61, No. 4, pp. 321–331, April 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volkovskaya, I.I., Eremeev, A.G. & Bykov, Y. High-Temperature Measurements of the Microwave Absoprtion Coefficient in Ceramic and Composite Materials. Radiophys Quantum El 61, 286–295 (2018). https://doi.org/10.1007/s11141-018-9890-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-018-9890-7

Navigation