Skip to main content
Log in

Features of the Supersonic Gravity Wave Penetration from the Earth’s Surface to the Upper Atmosphere

  • Published:
Radiophysics and Quantum Electronics Aims and scope

Using a high-resolution numerical model, we simulate the gravity wave (GW) modes having supersonic horizontal phase velocities on the Earth’s surface and propagating to the upper atmosphere. Such GWs can be produced, for example, by low-frequency spectral components of the seismic waves propagating over the Earth’s crust surface with horizontal velocities of up to a few kilometers per second. According to the linear theory, GW modes with so high horizontal velocities should be trapped, with their amplitudes exponentially decreasing with the altitude. Numerical experiments with a nonlinear wave model showed that the initial acoustic–gravity wave pulse occurring when a non-stationary ground wave source is “switched on” can create a system of relatively slow moving mesoscale irregularities at altitudes from the Earth’s surface to the upper atmosphere. The trapped GW modes excited by a supersonic surface source may feed this system of irregularities with energy and ensure its existence within time intervals of up to tens of wave periods. The irregularities can form undulatory inclined wave fronts, similar to effective upward propagating GWs. Thus, the supersonic trapped modes excited on the Earth’s surface can create atmospheric internal GWs having subsonic horizontal phase velocities and spreading to high altitudes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. J. Xia, Y.T. Liu, X. Cui, et al., J. Asian Earth Sci., 41, No. 4, 434 (2011).

    Article  ADS  Google Scholar 

  2. A. Komjathy, D. A. Galvan, P. Stephens, et al., Earth Planets Space, 64, No. 12, 1287 (2012).

  3. M.D. Zettergren and J.B. Snively, Geophys. Res. Lett ., 40, No. 20, 5345 (2013).

  4. M.D. Zettergren and J.B. Snively, J. Geophys. Res. Space Phys., 120, No. 9, 8002 (2015).

    Article  ADS  Google Scholar 

  5. S. Pulinets and K. Boyarchuk, Ionospheric Precursors of Earthquakes, Springer, Berlin (2004).

    Google Scholar 

  6. M. Hayakawa, Earthquake Prediction with Radio Techniques, Wiley and Sons, Singapore (2015).

    Book  Google Scholar 

  7. W. M. Telford, L.P. Geldart, and R.E. Sheriff, Appl. Geophys., Cambridge Univ. Press, Cambridge (1990).

  8. P. Lognonné, R. Garcia, and F. Crespon, Europhys. News, 37, No. 4, 11 (2006).

  9. A. Rozhnoi, M. Solovieva, O. Molchanov, et al., Nat. Hazards Earth Syst. Sci ., 7, No. 5, 625 (2007).

    Article  ADS  Google Scholar 

  10. E. M. Garmash, E. M. Lin’kov, L. N. Petrova, and G.M. Shved, Izv. Rossiisk. Akad. Nauk, Fiz. Atmos. Okeana, 25, No. 11, 1290 (1989).

  11. E. M. Lin’kov, L. N. Petrova, and K. S. Osipov, Dokl. Rossiisk. Akad. Nauk, 313, 239 (1990).

    Google Scholar 

  12. G. S. Golitsyn and V. I. Klyatskin, Izv. Akad. Nauk SSR, Fiz. Atmos. Okeana, 3, No. 10, 1044 (1967).

  13. R. R. Akhmedov and V.E.Kunitsyn, Vestn. Mosk. Univ., Ser. 3: Fiz. Astron., No. 3, 38 (2003).

  14. R. R. Akhmedov and V. E. Kunitsyn, Geomagn. Aeron., 44, No. 1, 95 (2004).

  15. V. E. Kunitsyn, S.N. Suraev, and R.R.Akhmedov, Moscow Univ. Phys. Bull ., 62, No. 2, 122 (2007).

    Article  ADS  Google Scholar 

  16. B. G. Mikhailenko and G. V. Reshetova, Rus. Geol. Geophys., 47, No. 5, 547 (2006).

    Google Scholar 

  17. B. G. Mikhailenko and G. V. Reshetova, Sib. Zhurn. Vychislit. Matem., 9, No. 1, 37 (2006).

    Google Scholar 

  18. E. E. Gossard and W. H. Hooke, Waves in the Atmosphere, Elsevier, New York (1975).

  19. G. I. Grigor’ev, Radiophys. Qauntum Electron., 42, No. 1, 1 (1999).

    Article  ADS  Google Scholar 

  20. N. M. Gavrilov, S.P.Kshevetskii, and A.V.Koval, Geosci. Model Dev., 8, No. 6, 1831 (2015).

    Article  ADS  Google Scholar 

  21. N. M. Gavrilov and S.P.Kshevetskii, Rus. J. Phys. Chem. B, 7, No. 6, 788 (2013).

  22. N. M. Gavrilov and S.P.Kshevetskii, Izv. Atmos. Oceanic Phys., 50, No. 1, 66 (2014).

  23. N. M. Gavrilov and S.P.Kshevetskii, Earth Planets Space, 66, No. 1, 88 (2014).

  24. A. E. Hedin, J. Geophys. Res., 96, No. A2, 1159 (1991).

    Article  Google Scholar 

  25. Yu.A.Kurdyaeva, S.P.Kshevetskii, N. M. Gavrilov, and E.V.Golikova, Sib. Zhurn. Vychislit. Matem., 20, No. 4, 391 (2017).

  26. N. M. Gavrilov and S. P. Kshevetskii, Adv. Space Res., 55, No. 9, 1833 (2015).

  27. N. M. Gavrilov, Ann. Geophys., 15, No. 12, 1570 (1997).

    Article  ADS  Google Scholar 

  28. T. Takami, S. Fukao, W. L. Oliver, et al., J. Atmos. Terr. Phys., 53, No. 8, 773 (1991).

    Article  ADS  Google Scholar 

  29. F. Ding, W. Wan, L. Liu, et al., J. Geophys. Res., 113, No. A3, A00A01 (2008).

  30. S. Vadas and G. Crowley, J. Geophys. Res., 115, No. A7, A07324 (2010).

  31. R. L. Walterscheid and M.P. Hickey, J. Geophys. Res., 116, No. 012, D12101 (2011).

  32. AtmoSym (Multiscale Model of the Atmosphere on the Earth’s Surface up to an Altitude of 500 km); http://atmos.kantiana.ru (last access: March 15, 2018).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Gavrilov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 61, No. 4, pp. 273–283, April 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gavrilov, N.M., Kshevetskii, S.P. Features of the Supersonic Gravity Wave Penetration from the Earth’s Surface to the Upper Atmosphere. Radiophys Quantum El 61, 243–252 (2018). https://doi.org/10.1007/s11141-018-9885-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-018-9885-4

Navigation