Skip to main content
Log in

Possibility of Effective High-Frequency Generation in Low-Voltage Gyrotrons at the Second Cyclotron Harmonic

  • Published:
Radiophysics and Quantum Electronics Aims and scope

Despite the high theoretical values of the electron efficiency of the subterahertz gyrotrons working at cyclotron harmonics at low operating voltages, the achievement of acceptable output power levels in such devices is a significant challenge due to the mode competition, the necessity of producing an electron beam with a high current, high ohmic losses in the walls, and the required high accuracy of cavity manufacturing. To solve these problems, we analyze thoroughly variants of low-voltage gyrotrons with conventional cavities and the recently proposed variant of the sectioned cavity, and present a calculation of the electron-optical system for such cavities. It is shown that by ensuring micrometer accuracy of cavity manufacturing at a low operating voltage (5 kV), it is possible to achieve output efficiencies of up to 5% and a power of up to 100 W at frequencies of about 0.4 THz and higher at the second cyclotron harmonic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. V. L. Bratman, A. G. Litvak, and E. V. Suvorov, Phys. Usp., 54, 8, 3 (2011).

  2. M. Yu. Glyavin, G.G. Denisov, V.E. Zapevalov, et al., Phys. Usp,, 59, 6, 595 (2016).

  3. T. Idehara and S.P. Sabchevski, J. Infr. Millim. Terahertz Waves, 38, No. 1, 62 (2017).

  4. J.-H. Ardenkjaer-Larsen, G. S. Boebinger, A.Comment, et al., Angewandte Chemie Int., 54, No. 32, 9162 (2015).

  5. T. Maly, G.T. Debelouchina, V. Bajaj, et al., J. Chem. Phys., 128, No. 5, 052211 (2008).

  6. N.P. Venediktov, V.V. Dubrov, V. E. Zapevalov, et al., Radiophys. Quantum Electron., 53, No. 4, 237 (2010).

  7. M. K. Hornstein, V. S. Bajaj, R.G. Griffin, and R. J. Temkin, IEEE Trans. Plasma Sci., 35, No. 1, 27 (2007).

  8. M.Yu. Glyavin, N. A. Zavolskiy, A. S.Sedov, and G.S. Nusinovich, Phys. Plasmas, 20, No. 3, 033103 (2013).

  9. V. L. Bratman, A. E. Fedotov, Yu. K. Kalynov, et al., IEEE Trans. Plasma Sci., 45, No. 4, 644 (2017).

  10. V. L. Bratman, A. E. Fedotov, A. P. Fokin, et al., Phys. Plasmas, 24, No. 11, 113105 (2017).

  11. A. B. Barnes, E.A.Nanni, J.Hertzfeld, et al., J. Magn. Resonance, 221, 147 (2012).

  12. T. H. Chang, T. Idehara, I. Ogawa, et al., J. Appl. Phys., 105, No. 6, 063304 (2009).

  13. V. L. Bratman, A. E. Fedotov, Yu. K. Kalynov, et al., IEEE Trans. Electron Devices, 64, No. 12, 5147 (2017).

  14. S. Pan, C. H. Du, X. B. Qi, and P. K. Liu, Scientific Reports, 7, 7265 (2017).

  15. A. V. Savilov, Appl. Phys. Lett., 95, 073503 (2009).

  16. I. V. Bandurkin, Yu. K. Kalynov, and A.V. Savilov, Phys. Plasmas, 17, 073101 (2010).

  17. R. Ben Moshe, V. L. Bratman, and M. Einat, IEEE Trans. Plasma Sci., 43, No. 8, 2598 (2015).

  18. G. S. Nusinovich, Introduction to the Physics of Gyrotrons, The John Hopkins Univ. Press, Baltimore, USA (2004).

  19. G. S. Nusinovich and T. B. Pankratova, in: Gyrotron [in Russian], Inst. Appl. Phys., Gorky (1981), p. 169.

  20. M. Y. Glyavin, Y. S. Oparina, A. V. Savilov, and A. S. Sedov, Phys. Plasmas, 23, No. 9, 093108 (2016).

  21. V. E. Zapevalov, I. G. Zarnitsyna, and G. S. Nusinovich, Radiophys. Quantum Electron., 22, No. 3, 254 (1979).

  22. V. L. Bratman, Y.K.Kalynov, and V.N.Manuilov, Phys. Rev. Lett., 102, No. 24, 245101 (2009).

  23. V. L. Bratman, A. E. Fedotov, and T. Idehara, Int. J. Infrared Millimeter Waves, 22, No. 10, 1409 (2001).

  24. V. L. Bratman and R. E. Erm, Proc. VII All-Union Sci. Conf. “Electronic Microwave Devices and Their Application Domains” [in Russian], Tomsk Univ., Tomsk (1972), p. 123.

  25. V. L. Bratman, Some Issues of the Theory of High-Power MCR. Phys.-Math. Sci. Cand. Theses, N. I. Lobachevsky Gorky State Univ. (1977), Ch. 2, p. 53.

  26. I. V. Bandurkin, Y. K. Kalynov, and A.V. Savilov, IEEE Trans. Electron Devices, 62, No. 7, 2356 (2015).

  27. I. V. Bandurkin, Yu. K. Kalynov, and A.V. Savilov, Radiophys. Quantum Electron., 28, 9, ??? (2015).

  28. K. Irwin, W. W. Destler, W. Lawson, et al., J. Appl. Phys., 69, No. 2, 627 (1991).

  29. D. B. McDermott, N.C. Luhmann Jr., A.Kupiszewski, and H.R. Jory, Phys. Fluids, 26, No. 7, 1936 (1983).

  30. V. L. Bratman, Yu. K. Kalynov, and A. É. Fedotov, Tech. Phys., 43, No. 10, 1219 (1998).

  31. V. L. Bratman, Yu. K. Kalynov, V. N. Manuilov, and S. V. Samsonov, Radiophys. Quantum Electron., 48, Nos. 10–11, 731 (2005).

  32. Sh. E. Tsimring, Introduction to High-Frequency Vacuum Electronics and Physics of Electron Beams [in Russian], Inst. Appl. Phys., Nizhny Novgorod (2012).

  33. Sh. E. Tsimring, Int. J. Infrared Millimeter Waves, 22, No. 10, 1433 (2001).

  34. V. L. Bratman, Yu.K.Kalynov, V.N.Manuilov, and S.V. Samsonov, Tech. Phys., 50, No. 12, 1611 (2005).

  35. O. P. Plankin and E. S. Semenov, ANGEL-2DS Software System for Modeling Gyrotron Guns. User Instructions [in Russian], Inst. Appl. Phys., Nizhny Novgorod (2011).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Fedotov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 61, No. 3, pp. 220–243, March 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Moshe, R., Bratman, V.L., Zavolsky, N.A. et al. Possibility of Effective High-Frequency Generation in Low-Voltage Gyrotrons at the Second Cyclotron Harmonic. Radiophys Quantum El 61, 204–215 (2018). https://doi.org/10.1007/s11141-018-9882-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-018-9882-7

Navigation