Advertisement

Radiophysics and Quantum Electronics

, Volume 60, Issue 12, pp 988–992 | Cite as

Sensitivity and Resolution of a Heterodyne Receiver Based on the NbN HEB Mixer with a Quantum-Cascade Laser as a Local Oscillator

  • I. V. Tretyakov
  • V. A. Anfertyev
  • L. S. Revin
  • N. S. Kaurova
  • B. M. Voronov
  • V. L. Vaks
  • G. N. Goltsman
Article
  • 23 Downloads

We present the results of experimental studies of the basic characteristics and operation features of a terahertz heterodyne detector based on the superconducting NbN HEB mixer and a quantum cascade laser as a local oscillator operating at a frequency of 2.02 THz. The measured noise temperature of such a mixer amounted to 1500 K. The spectral resolution of the detector is determined by the width of the local-oscillator spectral line whose measured value does not exceed 1 MHz. The quantum-cascade laser could be linearly tuned with respect to frequency with the coefficient 7.2 MHz/mA within the limits of the current oscillation bandwidth.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. M. Gershenzon, G. N. Goltsman, I. G. Gogidze, et al., Sverkhprovod. Fiz. Khim. Tekh., 3, 1582 (1990)Google Scholar
  2. 2.
    W. Zhang, P. Khosropanah, J. R. Gao, et al., Appl. Phys. Lett., 96, 111113 (2010).ADSCrossRefGoogle Scholar
  3. 3.
  4. 4.
    P. Putz, Astron. Astrophys., 542, L2 (2012).ADSCrossRefGoogle Scholar
  5. 5.
  6. 6.
  7. 7.
    R. Kohler, Nature, 417, 156 (2002).ADSCrossRefGoogle Scholar
  8. 8.
    H. Richter, M. Greiner-Bar, K. Rosner, et al., in: Proc. 25th Int. Symp. on Space Terahertz Technology (ISSTT), April 27–30, 2014, Moscow, p. 26.Google Scholar
  9. 9.
    D. Burghoff, Kao Tsung-Yu, N. Han, et al., Nat. Photon., 8, 462 (2014).ADSCrossRefGoogle Scholar
  10. 10.
    D. Meledin, A. Pavolotsky, V. Desmaris, et al., IEEE Trans. Microw. Theory Tech., 57, No. 1, 89 (2009).ADSCrossRefGoogle Scholar
  11. 11.
    I. V. Tret’yakov, N. S. Kaurova, B. M. Voronov, et al., Tech. Phys. Lett., 42, No. 6, 563 (2016).ADSCrossRefGoogle Scholar
  12. 12.
    I. Tretyakov, S. Ryabchun, M. Finkel, et al., Appl. Phys. Lett., 98, 033507 (2011).ADSCrossRefGoogle Scholar
  13. 13.
    D. G. Paveliev, Y. I. Koshurinov, A. S. Ivanov, et al., Semiconductors, 46, No. 1, 121 (2012).ADSCrossRefGoogle Scholar
  14. 14.
    N. Vercruyssen, T. G. A. Verhagen, M. G. Flokstra, et al., Phys. Rev. B, 85, 224503 (2012).ADSCrossRefGoogle Scholar
  15. 15.
    G. R. Boogaard, A. H. Verbruggen, W. Belzig, and T. M. Klapwijk, Phys. Rev. B, 69, 220503(R) (2004).Google Scholar
  16. 16.
    D. J. Hayton, A. Khudchenko, D. G. Pavelyev, et al., in: Proc. 25th Int. Symp. on Space Terahertz Technology (ISSTT), April 27–30, 2014, Moscow, p. 24.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • I. V. Tretyakov
    • 1
  • V. A. Anfertyev
    • 1
  • L. S. Revin
    • 1
  • N. S. Kaurova
    • 2
  • B. M. Voronov
    • 2
  • V. L. Vaks
    • 1
  • G. N. Goltsman
    • 1
    • 2
  1. 1.Institute for Physics of Microstructures of the Russian Academy of SciencesNizhny NovgorodRussia
  2. 2.Moscow Pedagogical State UniversityMoscowRussia

Personalised recommendations