Advertisement

Radiophysics and Quantum Electronics

, Volume 60, Issue 12, pp 942–959 | Cite as

Resonance Interaction of Relativistic Electrons with Ion-Cyclotron Waves. I. Specific Features of the Nonlinear Interaction Regimes

  • V. S. Grach
  • A. G. Demekhov
Article
  • 24 Downloads

We analyze the resonant interaction of relativistic electrons with ion-cyclotron waves in the Earth radiation belts. Finite-length wave packets with variable frequencies and different amplitude profiles are considered. Specific features of the nonlinear interaction regimes are analyzed on the basis of solving numerically a system of equations of the particle motion along with the efficiency of this interaction for a single pass of the particle through the wave packet. In the first part of this work, the peculiarities of the trajectories of individual particles are analyzed. The influence of the shape of the wave packet on the well-known regimes, such as particle trapping by the wave field and particle phase bunching, which leads to a non-zero average variation in the pitch angle in an inhomogeneous medium, are considered. It is shown that a long stay of a particle near the separatrix on the phase plane in the region far from the saddle leads to a strong decrease in the pitch angle of the particle in the absence of the trapping as well. This nonlinear regime (directed scattering) is possible for comparatively low initial pitch angles. In this case, the value of the pitch angle decrease depends on the initial phase of the particle. It is shown that the trajectories corresponding to the directed scattering can be regarded as a transitional type of trajectories, between the trajectories of the untrapped and trapped particles. Quantitative estimates of variations in the pitch angle are obtained, and it is confirmed that the directed scattering and trapping of particles by the wave field can lead to electron precipitation into the loss cone.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. J. Anderson and D. C. Hamilton, J. Geophys. Res.: Space Physics, 98, No. A7, 11369 (1993).CrossRefGoogle Scholar
  2. 2.
    B. J. Fraser and T. S. Nguyen, J. Atmosph. Solar-Terr. Phys., 63, 1225 (2001).ADSCrossRefGoogle Scholar
  3. 3.
    T.M. Loto’aniu, B. J. Fraser, and C. L. Waters, J. Geophys. Res.: Space Physics, 110, A07214 (2005).ADSGoogle Scholar
  4. 4.
    M.E. Usanova, I. R. Mann, J. Bortnik, et al., J. Geophys. Res.: Space Physics, 117, No. A10, A10218 (2012).ADSCrossRefGoogle Scholar
  5. 5.
    K. Keika, K. Takahashi, A. Y. Ukhorskiy, and Y. Miyoshi, J. Geophys. Res.: Space Physics, 118, No. 7, 4135 (2013).ADSCrossRefGoogle Scholar
  6. 6.
    E.N. Ermakova, A. G. Yahnin, T. A. Yahnina, et al., Radiophys. Quantum Electron., 58, No. 8, 547 (2015).ADSCrossRefGoogle Scholar
  7. 7.
    J.Kangas, A.Guglielmi, O.Pokhotelov, Space Sci. Rev., 83, 435 (1998).ADSCrossRefGoogle Scholar
  8. 8.
    A. Demekhov, J. Atmosph. Solar-Terr. Phys., 69, 1609 (2007).ADSCrossRefGoogle Scholar
  9. 9.
    M. J. Engebretson, A.Keiling, K.-H. Fornacon, et al., Planet. and Space Sci., 55, 829 (2007).ADSCrossRefGoogle Scholar
  10. 10.
    M. J. Engebretson, J. L. Posch, A. M. Westerman, et al., J. Geophys. Res.: Space Physics, 113, No.A7, A07206 (2008).ADSCrossRefGoogle Scholar
  11. 11.
    J. S. Pickett, B. Grison, Y. Omura, et al., Geophys. Res. Lett., 37, L09104 (2010).ADSCrossRefGoogle Scholar
  12. 12.
    P. A. Bespalov and V.Yu.Trakhtengerts, Alfv´en Masers [in Russian], Inst. Appl. Phys., Gorky (1986).Google Scholar
  13. 13.
    O. Santolik, D. Gurnett, J. Pickett, et al., J. Geophys. Res., 108, No. A7, 1278 (2003).CrossRefGoogle Scholar
  14. 14.
    V. Y. Trakhtengerts, J. Geophys. Res., 100, No. 9, 17205 (1995).ADSCrossRefGoogle Scholar
  15. 15.
    V. Trakhtengerts and A. Demekhov, J. Atmosph. Solar-Terr. Phys., 69, 1651 (2007).ADSCrossRefGoogle Scholar
  16. 16.
    Y. Omura, J. Pickett, B. Grison, et al., J. Geophys. Res.: Space Physics, 115, A07234 (2010).ADSCrossRefGoogle Scholar
  17. 17.
    M. Shoji, Y. Omura, B. Grison, et al., Geophys. Res. Lett., 38, No. 17, L17102 (2011).ADSCrossRefGoogle Scholar
  18. 18.
    K.Mursula, J. Atmosph. Solar-Terr. Physics, 69, 1623 (2007).ADSCrossRefGoogle Scholar
  19. 19.
    M. J. Engebretson, J. L.Posch, J.R.Wygant, et al., J. Geophys. Res.: Space Physics, 120, 5465 (2015).ADSCrossRefGoogle Scholar
  20. 20.
    R. M. Thorne and C. F. Kennel, J. Geophys. Res., 76, No. 19, 4446 (1971).ADSCrossRefGoogle Scholar
  21. 21.
    D. Summers and R. M. Thorne, J. Geophys. Res.: Space Physics, 108, No. A4, 1143 (2003).ADSCrossRefGoogle Scholar
  22. 22.
    V.K. Jordanova, J. Albert, and Y. Miyoshi, J. Geophys. Res.: Space Physics, 113, No.A3, A00A10 (2008).ADSCrossRefGoogle Scholar
  23. 23.
    J. M. Albert and J. Bortnik, Geophys. Res. Lett., 36, No. 12, L12110 (2009).ADSCrossRefGoogle Scholar
  24. 24.
    K. Liu, D. Winske, S. P. Gary, and G. D. Reeves, J. Geophys. Res.: Space Physics, 117, No.A6, A06218 (2012).ADSGoogle Scholar
  25. 25.
    G. Khazanov, D. Sibeck, A. Tel’nikhin, and T. Kronberg, Phys. Plasmas, 21, No. 8, 082901 (2014).ADSCrossRefGoogle Scholar
  26. 26.
    A. V. Artemyev, D. Mourenas, O. V. Agapitov, et al., Phys. Plasmas, 22, No. 8, 082901 (2015).ADSCrossRefGoogle Scholar
  27. 27.
    Y. Omura and Q. Zhao, J. Geophys. Res.: Space Physics, 117, No. A8, A08227 (2012).Google Scholar
  28. 28.
    Y. Omura and Q. Zhao, J. Geophys. Res.: Space Physics, 118, No. 8, 5008 (2013).ADSCrossRefGoogle Scholar
  29. 29.
    Y. Kubota and Y. Omura, J. Geophys. Res.: Space Physics, 122, No. 1, 293 (2017).ADSCrossRefGoogle Scholar
  30. 30.
    V. I. Karpman, Y. N. Istomin, and D. R. Shklyar, Plasma Phys., 16, No. 8, 685 (1974).ADSCrossRefGoogle Scholar
  31. 31.
    J. M. Albert, Phys. Fluids B, 5, 2744 (1993).ADSCrossRefGoogle Scholar
  32. 32.
    J. M. Albert, J. Geophys. Res., 105, 21191 (2000).ADSCrossRefGoogle Scholar
  33. 33.
    A. G. Demekhov, V. Yu. Trakhtengerts, M. Rycroft, and D. Nunn, Geomagn. Aeron., 46, No. 6, 711 (2006).ADSCrossRefGoogle Scholar
  34. 34.
    V.Y.Trakhtengerts, M. J. Rycroft, D.Nunn, and A.G.Demekhov, J. Geophys. Res.: Space Physics, 108, 1138 (2003).ADSCrossRefGoogle Scholar
  35. 35.
    D.R. Shklyar, Ann. Geophys., 29, 1179 (2011).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Applied Physics of the Russian Academy of SciencesNizhny NovgorodRussia
  2. 2.Polar Geophysical InstituteApatityRussia

Personalised recommendations