Cross-Polarization Optical Coherence Tomography with Active Maintenance of the Circular Polarization of a Sounding Wave in a Common Path System

We consider a cross-polarization optical coherence tomography system with a common path for the sounding and reference waves and active maintenance of the circular polarization of a sounding wave. The system is based on the formation of birefringent characteristics of the total optical path, which are equivalent to a quarter-wave plate with a 45° orientation of its optical axes with respect to the linearly polarized reference wave. Conditions under which any light-polarization state can be obtained using a two-element phase controller are obtained. The dependence of the local cross-scattering coefficient of light in a model medium and biological tissue on the sounding-wave polarization state is demonstrated. The necessity of active maintenance of the circular polarization of a sounding wave in this common path system (including a flexible probe) is shown to realize uniform optimal conditions for cross-polarization studies of biological tissue.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    J.M. Schmitt and S. H. Xiang, Opt. Lett., 23, No. 13, 1060 (1998).

    ADS  Article  Google Scholar 

  2. 2.

    F. Feldchtein, V. Gelikonov, R. Iksanov, et al., Opt. Express, 3, No. 6, 239 (1998).

    ADS  Article  Google Scholar 

  3. 3.

    R. V. Kuranov, V. V. Sapozhnikova, I. V. Turchin, et al., Opt. Express, 10, No. 15, 707 (2002).

    ADS  Article  Google Scholar 

  4. 4.

    R.V. Kuranov, V.V. Sapozhnikova, N.M. Shakhova, et al., Quantum Electron., 32, No. 11, 993 (2002).

    ADS  Article  Google Scholar 

  5. 5.

    V. Sankaran, J. T. Walsh, and D. J. Maitland, J. Biomed. Opt., 7, No. 3, 300 (2002).

    ADS  Article  Google Scholar 

  6. 6.

    D. Fried, J. Xie, S. Shafi, et al., J. Biomed. Opt., 7, No. 4, 618 (2002).

    ADS  Article  Google Scholar 

  7. 7.

    V. M. Gelikonov and G. V. Gelikonov, Laser Phys. Lett., 3, No. 9, 445 (2006).

    ADS  Article  Google Scholar 

  8. 8.

    M. I. Mishchenko and J. W. Hovenier, Opt. Lett., 20, No. 12, 1356 (1995).

    ADS  Article  Google Scholar 

  9. 9.

    S. J. Ostro, Rev. Mod. Phys., 65, No. 4, 1235 (1993).

    ADS  Article  Google Scholar 

  10. 10.

    M.R. Hee, D. Huang, E. A. Swanson, et al., J. Opt. Soc. Am., 9, No. 6, 903 (1992).

    ADS  Article  Google Scholar 

  11. 11.

    J. F. De Boer, T. E. Milner, M. J. C. van Gemert, et al., Opt. Lett., 22, No. 12, 934 (1997).

    ADS  Article  Google Scholar 

  12. 12.

    J. F. De Boer, S.M. Srinivas, A. Malekafzali, et al., Opt. Express, 3, No. 6, 212 (1998).

    ADS  Article  Google Scholar 

  13. 13.

    M. J. Everett, K. Schoenenberger, B. W. Colston, Jr., et al., Opt. Lett., 23, No. 3, 228 (1998).

    ADS  Article  Google Scholar 

  14. 14.

    J. F. De Boer, T. E. Milner, and J. S. Nelson, Opt. Lett., 24, No. 5, 300 (1999).

    ADS  Article  Google Scholar 

  15. 15.

    G. Yao and L. V. Wang, Opt. Lett., 24, No. 8, 537 (1999).

    ADS  Article  Google Scholar 

  16. 16.

    C.K. Hitzenberger, E. Gotzinger, M. Sticker, et al., Opt. Express, 9, No. 13, 780 (2001).

    ADS  Article  Google Scholar 

  17. 17.

    M. Todorovié, S. Jiao, L. V. Wang, et al., Opt. Lett., 29, No. 20, 2402 (2004).

    ADS  Article  Google Scholar 

  18. 18.

    W. Drexler and J. G. Fujimoto, eds., Optical Coherence Tomography: Technology and Applications, Springer, Berlin (2008).

  19. 19.

    B. Baumann, Appl. Sci., 7, No. 5, 474 (2017).

    Article  Google Scholar 

  20. 20.

    S. Jiao, G. Yao, and L. V. Wang, Appl. Opt., 39, No. 34, 6318 (2000).

    ADS  Article  Google Scholar 

  21. 21.

    V.Yu. Zaitsev, V. M. Gelikonov, L. A. Matveev, et. al., Radiophys. Quantum Electron., 57, No. 1, 52 (2014).

    ADS  Article  Google Scholar 

  22. 22.

    H. Kang, J. J. Jiao, C. Lee, et al., IEEE J. Selected Topics Quantum Electron., 16, No. 4, 870 (2010).

    Article  Google Scholar 

  23. 23.

    C. Lammeier, Y.P. Li, S. Lunos, et al., J. Biomed. Opt., 17, No. 10, 106002 (2012).

    ADS  Article  Google Scholar 

  24. 24.

    R. Chen, J. Rudney, C. Aparicio, et al., Lett. Appl. Microbiol., 54, No. 6, 537 (2012).

    Article  Google Scholar 

  25. 25.

    K. H. Chan, A. C. Chan, W. A. Fried, et al., J. Biophoton., 8, Nos. 1–2, 36 (2015).

  26. 26.

    P. Lentona, J. Rudneyb, R. Chenb, et al., Dent. Mater., 28, No. 7, 792 (2012).

  27. 27.

    N. Gladkova, O. Streltsova, E. Zagaynova, et al., J. Biophoton., 4, Nos. 7–8, 519 (2011).

  28. 28.

    N. Gladkova, E. Kiseleva, N. Robakidze, et al., J. Biophoton., 6, No. 4, 321 (2013).

    Article  Google Scholar 

  29. 29.

    E. Kiseleva, M. Kirillin, F. Feldchtein, et al., Biomed. Opt. Express, 6, No. 4, 1464 (2015).

    Article  Google Scholar 

  30. 30.

    V. M. Gelikonov and G. V. Gelikonov, Quantum Electron., 38, No. 7, 634 (2008).

    ADS  Article  Google Scholar 

  31. 31.

    K. H. Kim, B. H. Park, Y. Tu, et al., Opt. Express, 19, No. 2, 552 (2011).

    ADS  Article  Google Scholar 

  32. 32.

    F. Feldchtein, J.Bush, G. Gelikonov, et al., Proc. SPIE., 5690, 349 (2005).

    ADS  Article  Google Scholar 

  33. 33.

    P. E. Wolf and G. Maret, Phys. Rev. Lett., 55, No. 24, 2696 (1985).

    ADS  Article  Google Scholar 

  34. 34.

    V. P. Tishkovets and M. I. Mishchenko, J. Quant. Spectrosc. Rad. Transf., 110, Nos. 1–2, 139 (2009).

  35. 35.

    M. W. Long, Trans. IEEE AP-14, 13, No. 5, 749 (1965).

  36. 36.

    V. M. Gelikonov, D. D. Gusovskii, Yu. N. Konoplev, et al., Quantum Electron., 17, No. 1, 87 (1990).

  37. 37.

    V. M. Gelikonov, Yu. N. Konoplev, M. N. Kucheva, et al., Opt. Spectrosc., 71, No. 4, 397 (1991).

  38. 38.

    V. M. Gelikonov, G. V. Gelikonov, and P. A. Shilyagin, Opt. Spectrosc., 106, No. 3, 459 (2009).

  39. 39.

    F. A. Mohr and U. Scholz, in: S. Ezekiel and N. J. Arditty, eds., Fiber-Optic Rotation Sensor and Related Technologies, Springer-Verlag, Berlin–Heidelberg (1982), p. 163.

  40. 40.

    K. Goto, T. Sueta, and T. Makimoto, IEEE J. Quantum Electron., QE-8, No. 6, 486 (1972).

    ADS  Article  Google Scholar 

  41. 41.

    H. Kuwahara, Appl. Opt., 19, No. 2, 319 (1980).

    ADS  Article  Google Scholar 

  42. 42.

    N. Vansteenkiste, P. Vignolo, and A. Aspect, J. Opt. Soc. Am. A, 10, No. 10, 2240 (1993).

    ADS  Article  Google Scholar 

  43. 43.

    M. Johnson, Appl. Opt., 18, No. 9, 1288 (1979).

    ADS  Article  Google Scholar 

  44. 44.

    I. V. Goltser, M. Y. Darscht, N. D. Kundikova, et al., Opt. Commun., 97, Nos. 5–6, 291 (1993).

  45. 45.

    Y. Kidon, Y. Suematsu, and K. Furuya, IEEE J. Quantum Electron., QE-17, No. 6, 991 (1981).

    ADS  Google Scholar 

  46. 46.

    H. Hurwitz and R.C. Jones, J. Opt. Soc. Am., 31, No. 7, 493 (1941).

    ADS  Article  Google Scholar 

  47. 47.

    R. C. Jones, J. Opt. Soc. Am., 31, No. 7, 488 (1941).

    ADS  Article  Google Scholar 

  48. 48.

    R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light, North-Holland, Amsterdam (1977), p. 529.

    Google Scholar 

  49. 49.

    A. M. Sergeev, V. M. Gelikonov, G. V. Gelikonov, et al., Opt. Express, 1, No. 13, 432 (1997).

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. M. Gelikonov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 60, No. 11, pp. 1002–1018, November 2017.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gelikonov, V.M., Romashov, V.N., Shabanov, D.V. et al. Cross-Polarization Optical Coherence Tomography with Active Maintenance of the Circular Polarization of a Sounding Wave in a Common Path System. Radiophys Quantum El 60, 897–911 (2018). https://doi.org/10.1007/s11141-018-9856-9

Download citation