Advertisement

Radiophysics and Quantum Electronics

, Volume 60, Issue 11, pp 897–911 | Cite as

Cross-Polarization Optical Coherence Tomography with Active Maintenance of the Circular Polarization of a Sounding Wave in a Common Path System

  • V. M. GelikonovEmail author
  • V. N. Romashov
  • D. V. Shabanov
  • S. Yu. Ksenofontov
  • D. A. Terpelov
  • P. A. Shilyagin
  • G. V. Gelikonov
  • I. A. Vitkin
Article

We consider a cross-polarization optical coherence tomography system with a common path for the sounding and reference waves and active maintenance of the circular polarization of a sounding wave. The system is based on the formation of birefringent characteristics of the total optical path, which are equivalent to a quarter-wave plate with a 45° orientation of its optical axes with respect to the linearly polarized reference wave. Conditions under which any light-polarization state can be obtained using a two-element phase controller are obtained. The dependence of the local cross-scattering coefficient of light in a model medium and biological tissue on the sounding-wave polarization state is demonstrated. The necessity of active maintenance of the circular polarization of a sounding wave in this common path system (including a flexible probe) is shown to realize uniform optimal conditions for cross-polarization studies of biological tissue.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.M. Schmitt and S. H. Xiang, Opt. Lett., 23, No. 13, 1060 (1998).ADSCrossRefGoogle Scholar
  2. 2.
    F. Feldchtein, V. Gelikonov, R. Iksanov, et al., Opt. Express, 3, No. 6, 239 (1998).ADSCrossRefGoogle Scholar
  3. 3.
    R. V. Kuranov, V. V. Sapozhnikova, I. V. Turchin, et al., Opt. Express, 10, No. 15, 707 (2002).ADSCrossRefGoogle Scholar
  4. 4.
    R.V. Kuranov, V.V. Sapozhnikova, N.M. Shakhova, et al., Quantum Electron., 32, No. 11, 993 (2002).ADSCrossRefGoogle Scholar
  5. 5.
    V. Sankaran, J. T. Walsh, and D. J. Maitland, J. Biomed. Opt., 7, No. 3, 300 (2002).ADSCrossRefGoogle Scholar
  6. 6.
    D. Fried, J. Xie, S. Shafi, et al., J. Biomed. Opt., 7, No. 4, 618 (2002).ADSCrossRefGoogle Scholar
  7. 7.
    V. M. Gelikonov and G. V. Gelikonov, Laser Phys. Lett., 3, No. 9, 445 (2006).ADSCrossRefGoogle Scholar
  8. 8.
    M. I. Mishchenko and J. W. Hovenier, Opt. Lett., 20, No. 12, 1356 (1995).ADSCrossRefGoogle Scholar
  9. 9.
    S. J. Ostro, Rev. Mod. Phys., 65, No. 4, 1235 (1993).ADSCrossRefGoogle Scholar
  10. 10.
    M.R. Hee, D. Huang, E. A. Swanson, et al., J. Opt. Soc. Am., 9, No. 6, 903 (1992).ADSCrossRefGoogle Scholar
  11. 11.
    J. F. De Boer, T. E. Milner, M. J. C. van Gemert, et al., Opt. Lett., 22, No. 12, 934 (1997).ADSCrossRefGoogle Scholar
  12. 12.
    J. F. De Boer, S.M. Srinivas, A. Malekafzali, et al., Opt. Express, 3, No. 6, 212 (1998).ADSCrossRefGoogle Scholar
  13. 13.
    M. J. Everett, K. Schoenenberger, B. W. Colston, Jr., et al., Opt. Lett., 23, No. 3, 228 (1998).ADSCrossRefGoogle Scholar
  14. 14.
    J. F. De Boer, T. E. Milner, and J. S. Nelson, Opt. Lett., 24, No. 5, 300 (1999).ADSCrossRefGoogle Scholar
  15. 15.
    G. Yao and L. V. Wang, Opt. Lett., 24, No. 8, 537 (1999).ADSCrossRefGoogle Scholar
  16. 16.
    C.K. Hitzenberger, E. Gotzinger, M. Sticker, et al., Opt. Express, 9, No. 13, 780 (2001).ADSCrossRefGoogle Scholar
  17. 17.
    M. Todorovié, S. Jiao, L. V. Wang, et al., Opt. Lett., 29, No. 20, 2402 (2004).ADSCrossRefGoogle Scholar
  18. 18.
    W. Drexler and J. G. Fujimoto, eds., Optical Coherence Tomography: Technology and Applications, Springer, Berlin (2008).Google Scholar
  19. 19.
    B. Baumann, Appl. Sci., 7, No. 5, 474 (2017).CrossRefGoogle Scholar
  20. 20.
    S. Jiao, G. Yao, and L. V. Wang, Appl. Opt., 39, No. 34, 6318 (2000).ADSCrossRefGoogle Scholar
  21. 21.
    V.Yu. Zaitsev, V. M. Gelikonov, L. A. Matveev, et. al., Radiophys. Quantum Electron., 57, No. 1, 52 (2014).ADSCrossRefGoogle Scholar
  22. 22.
    H. Kang, J. J. Jiao, C. Lee, et al., IEEE J. Selected Topics Quantum Electron., 16, No. 4, 870 (2010).CrossRefGoogle Scholar
  23. 23.
    C. Lammeier, Y.P. Li, S. Lunos, et al., J. Biomed. Opt., 17, No. 10, 106002 (2012).ADSCrossRefGoogle Scholar
  24. 24.
    R. Chen, J. Rudney, C. Aparicio, et al., Lett. Appl. Microbiol., 54, No. 6, 537 (2012).CrossRefGoogle Scholar
  25. 25.
    K. H. Chan, A. C. Chan, W. A. Fried, et al., J. Biophoton., 8, Nos. 1–2, 36 (2015).Google Scholar
  26. 26.
    P. Lentona, J. Rudneyb, R. Chenb, et al., Dent. Mater., 28, No. 7, 792 (2012).Google Scholar
  27. 27.
    N. Gladkova, O. Streltsova, E. Zagaynova, et al., J. Biophoton., 4, Nos. 7–8, 519 (2011).Google Scholar
  28. 28.
    N. Gladkova, E. Kiseleva, N. Robakidze, et al., J. Biophoton., 6, No. 4, 321 (2013).CrossRefGoogle Scholar
  29. 29.
    E. Kiseleva, M. Kirillin, F. Feldchtein, et al., Biomed. Opt. Express, 6, No. 4, 1464 (2015).CrossRefGoogle Scholar
  30. 30.
    V. M. Gelikonov and G. V. Gelikonov, Quantum Electron., 38, No. 7, 634 (2008).ADSCrossRefGoogle Scholar
  31. 31.
    K. H. Kim, B. H. Park, Y. Tu, et al., Opt. Express, 19, No. 2, 552 (2011).ADSCrossRefGoogle Scholar
  32. 32.
    F. Feldchtein, J.Bush, G. Gelikonov, et al., Proc. SPIE., 5690, 349 (2005).ADSCrossRefGoogle Scholar
  33. 33.
    P. E. Wolf and G. Maret, Phys. Rev. Lett., 55, No. 24, 2696 (1985).ADSCrossRefGoogle Scholar
  34. 34.
    V. P. Tishkovets and M. I. Mishchenko, J. Quant. Spectrosc. Rad. Transf., 110, Nos. 1–2, 139 (2009).Google Scholar
  35. 35.
    M. W. Long, Trans. IEEE AP-14, 13, No. 5, 749 (1965).Google Scholar
  36. 36.
    V. M. Gelikonov, D. D. Gusovskii, Yu. N. Konoplev, et al., Quantum Electron., 17, No. 1, 87 (1990).Google Scholar
  37. 37.
    V. M. Gelikonov, Yu. N. Konoplev, M. N. Kucheva, et al., Opt. Spectrosc., 71, No. 4, 397 (1991).Google Scholar
  38. 38.
    V. M. Gelikonov, G. V. Gelikonov, and P. A. Shilyagin, Opt. Spectrosc., 106, No. 3, 459 (2009).Google Scholar
  39. 39.
    F. A. Mohr and U. Scholz, in: S. Ezekiel and N. J. Arditty, eds., Fiber-Optic Rotation Sensor and Related Technologies, Springer-Verlag, Berlin–Heidelberg (1982), p. 163.Google Scholar
  40. 40.
    K. Goto, T. Sueta, and T. Makimoto, IEEE J. Quantum Electron., QE-8, No. 6, 486 (1972).ADSCrossRefGoogle Scholar
  41. 41.
    H. Kuwahara, Appl. Opt., 19, No. 2, 319 (1980).ADSCrossRefGoogle Scholar
  42. 42.
    N. Vansteenkiste, P. Vignolo, and A. Aspect, J. Opt. Soc. Am. A, 10, No. 10, 2240 (1993).ADSCrossRefGoogle Scholar
  43. 43.
    M. Johnson, Appl. Opt., 18, No. 9, 1288 (1979).ADSCrossRefGoogle Scholar
  44. 44.
    I. V. Goltser, M. Y. Darscht, N. D. Kundikova, et al., Opt. Commun., 97, Nos. 5–6, 291 (1993).Google Scholar
  45. 45.
    Y. Kidon, Y. Suematsu, and K. Furuya, IEEE J. Quantum Electron., QE-17, No. 6, 991 (1981).ADSGoogle Scholar
  46. 46.
    H. Hurwitz and R.C. Jones, J. Opt. Soc. Am., 31, No. 7, 493 (1941).ADSCrossRefGoogle Scholar
  47. 47.
    R. C. Jones, J. Opt. Soc. Am., 31, No. 7, 488 (1941).ADSCrossRefGoogle Scholar
  48. 48.
    R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light, North-Holland, Amsterdam (1977), p. 529.Google Scholar
  49. 49.
    A. M. Sergeev, V. M. Gelikonov, G. V. Gelikonov, et al., Opt. Express, 1, No. 13, 432 (1997).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • V. M. Gelikonov
    • 1
    • 2
    Email author
  • V. N. Romashov
    • 1
    • 2
  • D. V. Shabanov
    • 1
  • S. Yu. Ksenofontov
    • 1
  • D. A. Terpelov
    • 1
  • P. A. Shilyagin
    • 1
    • 2
  • G. V. Gelikonov
    • 1
    • 2
  • I. A. Vitkin
    • 2
    • 3
  1. 1.Institute of Applied Physics of the Russian Academy of SciencesMoscowRussia
  2. 2.Nizhny Novgorod State Medical AcademyNizhny NovgorodRussia
  3. 3.University of TorontoTorontoCanada

Personalised recommendations