Skip to main content
Log in

Collisional Coupling of the Molecular Oxygen 16O2 Fine-Structure Lines Under Low Pressures

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We consider collisional coupling between the fine-structure lines of molecular oxygen near 60 GHz under pressures of up to 20 Torr. The observation possibility of the coupling effect manifestation in the oxygen line profile is analyzed by means of numerical simulation. The signal-to-noise ratio required for direct observation of the collisional coupling and deviations of the line parameters from the tabulated values related to the indirect effect manifestation in the spectra are numerically evaluated. By the example of the overlapping profiles of the 13+ and 3− lines, the impact of collisional coupling on the doublet profile is experimentally demonstrated. The results of the analysis of experimental spectra are in good agreement with the results of numerical simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.Yu. Tretyakov, High-Precision Resontor Spectroscopy of Atmospheric Gases in the Millimeter and Submillimeter Wavelength Ranges [in Russian], Inst. Appl. Phys. Rus. Acad. Sci., Nizhny Novgorod (2016).

    Google Scholar 

  2. J.-M. Hartmann, C. Boulet, and D. Robert, Collisional Effects on Molecular Spectra, Elsevier, Amsterdam (2008).

    Google Scholar 

  3. E.W. Smith, J. Chem. Phys., 74, No. 12, 6658 (1981).

    Article  ADS  Google Scholar 

  4. P.W. Rosenkranz, IEEE Trans. Anten. Propagat., 23, No. 4, 498 (1975).

    Article  ADS  Google Scholar 

  5. I. E. Gordon, L. S. Rothman, C. Hill, et al., J. Quant. Spectrosc. Rad. Transfer, 203, 3 (2017).

    Article  ADS  Google Scholar 

  6. N. Jacquinet-Husson, R. Armante, N. A. Scott, et al., J. Mol. Spectrosc., 327, 31 (2016).

    Article  ADS  Google Scholar 

  7. D. S. Makarov, M.Yu. Tretyakov, and C. Boulet, J. Quant. Spectrosc. Rad. Transfer, 124, 1 (2013).

    Article  ADS  Google Scholar 

  8. M.Yu. Tretyakov, M.A. Koshelev, V. V. Dorovskikh, et al., J. Mol. Spectrosc., 231, 1 (2005).

    Article  ADS  Google Scholar 

  9. H. J. Liebe, P. W. Rosenkranz, and G. A. Hufford, J. Quant. Spectrosc. Rad. Transfer, 48, Nos. 5–6, 629 (1992).

    Article  ADS  Google Scholar 

  10. D. S. Makarov, M.Yu. Tretyakov, and P.W. Rosenkranz, J. Quant. Spectrosc. Rad. Transfer, 112, No. 9, 1420 (2011).

    Article  ADS  Google Scholar 

  11. K. S. Lam, J. Quant. Spectrosc. Rad. Transfer, 17, 351 (1977).

    Article  ADS  Google Scholar 

  12. J. H. Van Vleck and V. F. Weisskopf, Rev. Mod. Phys., 17, 227 (1945).

    Article  ADS  Google Scholar 

  13. M. A. Koshelev, I.N. Vilkov, and M.Yu. Tretyakov, J. Quant. Spectrosc. Rad. Transfer, 169, 91 (2016).

    Article  ADS  Google Scholar 

  14. P.W. Rosenkranz, J. Quant. Spectrosc. Rad. Transfer, 39, 281 (1988).

    Article  ADS  Google Scholar 

  15. M.Yu. Tretyakov, M.A. Koshelev, D. S. Makarov, and M.V. Tonkov, Instr. Eksp. Tech., S7, No. 1, 78 (2008).

    Article  Google Scholar 

  16. M.Yu. Tretyakov, S.A. Volokhov, G.Yu. Golubyatnikov, et al., Int. J. IR MM Waves, 20, No. 8, 1443 (1999).

    Article  Google Scholar 

  17. A. V. Burenin, Radiophys. Quantum Electron., 17, No. 9, 984 (1974).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Makarov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 60, No. 10, pp. 904–921, October 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makarov, D.S., Vilkov, I.N., Koshelev, M.A. et al. Collisional Coupling of the Molecular Oxygen 16O2 Fine-Structure Lines Under Low Pressures. Radiophys Quantum El 60, 808–823 (2018). https://doi.org/10.1007/s11141-018-9849-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-018-9849-8

Navigation