Skip to main content
Log in

Modeling of Thermal Lenses in Cr:CdSe and Cr:ZnSe Chalcogenide Gain Media

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We estimate thermal aberrations in Cr:CdSe and Cr:ZnSe chalcogenide crystals exposed to continuous-wave electromagnetic radiation at a wavelength of 1907 nm. Using the SIMULIA Abaqus software suite, deformation of such materials during their heating due to absorption of part of the radiation is simulated numerically. On the basis of the obtained results, the focal distances of the lenses induced in crystalline media are calculated by the matrix optics method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. V. Tarasov, Physics of Processes in Generators of Coherent Optical Radiation [in Russian], Radio i Svyaz’, Moscow (1981).

    Google Scholar 

  2. G. M. Zverev and Yu. D. Golyaev, Crystal Lasers and their Application [in Russian], Radio I Svyaz’, Moscow (1994).

    Google Scholar 

  3. N. D. Milovsky and V. I. Talanov, Influence of the Resonator Configuration on the Generation Threshold of an Optical Quantum Generator [in Russian], N. I. Lobachevsky Gorky State Univ., Gorky (1965).

    Google Scholar 

  4. S. Mirov, V. Fedorov, I. Moskalev, et al. J. Luminesc., 133, 268 (2013).

    Article  ADS  Google Scholar 

  5. C.E. Webb and J.D.C. Jones, Handbook of Laser Technology and Applications, Taylor & Francis, Abingdon (2003).

    Google Scholar 

  6. H. von Philipsborn, J. Appl. Phys., 38, 955 (1967).

    Article  ADS  Google Scholar 

  7. I. T. Sorokina, Opt. Mater., 26, 395 (2004).

    Article  ADS  Google Scholar 

  8. M.E. Doroshenko, P. Koranda, H. Jelinková, et al., Laser Phys. Lett., 4, 503 (2007).

    Article  ADS  Google Scholar 

  9. V. A. Akimov, V. I. Kozlovskii, Yu.V. Korostelin, et al., Quantum Electron., 38, No. 3, 205 (2008).

    Article  ADS  Google Scholar 

  10. M. A. Gubin, A. N. Kireev, Yu. V. Korostelin, et al., Bull. Lebedev Phys. Inst., 38, 7, 205 (2011).

    Article  ADS  Google Scholar 

  11. I.T. Sorokina and E. Sorokin, in: Proc. Advanced Solid-State Lasers, OSA, Munich (2001), Vol. 50, p. 157.

  12. M. N. Cizmeciyan, J. W. Kim, S. Bae, et al., Opt. Lett., 38, No. 3, 341 (2013).

    Article  ADS  Google Scholar 

  13. J. D. Beasley, Appl. Opt., 33, 1000 (1994).

    Article  ADS  Google Scholar 

  14. http://www.elan-optics.com/eng/47.html .

  15. M. J. Weber, Handbook of Optical Materials, CRC Press, New York (2003).

    Google Scholar 

  16. K. A. Yahya, O. A. Hussein, and O. H. Mustafa, Adv. Appl. Sci. Res., 4, 400 (2013).

    Google Scholar 

  17. H. Kuchling, Taschenbuch der Physik, Carl-Hansen-Verlag, Leipzig (2007).

    Google Scholar 

  18. L.D. Landau, L.P. Pitaevskii, A. M. Kosevich, and E. M. Lifshitz, Theory of Elasticity, Butterworth-Heinemann, Oxford (2012).

    Google Scholar 

  19. A. Gerrard and J.M. Burch, Introduction to Matrix Methods in Optics, Wiley, New York (1977).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Martynova.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 60, No. 8, pp. 751–761, August 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konstantinov, A.Y., Martynova, O.V. & Zinovyev, A.P. Modeling of Thermal Lenses in Cr:CdSe and Cr:ZnSe Chalcogenide Gain Media. Radiophys Quantum El 60, 670–679 (2018). https://doi.org/10.1007/s11141-018-9836-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-018-9836-0

Navigation